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Summary

The stage-regulated HASPB and SHERP proteins
of Leishmania major are predominantly expressed
in cultured metacyclic parasites that are compe-
tent for macrophage uptake and survival. The role
of these proteins in parasite development in the
sand fly vector has not been explored, however.
Here, we confirm that expression of HASPB is
detected only in vector metacyclic stages, corre-
lating with the expression of metacyclic-specific
lipophosphoglycan and providing the first defini-
tive protein marker for this infective sand fly stage.
Similarly, SHERP is expressed in vector meta-
cyclics but is also detected at low levels in the
preceding short promastigote stage. Using geneti-
cally modified parasites lacking or complemented
for the LmcDNA16 locus on chromosome 23 that
contains the HASP and SHERP genes, we further
show that the presence of this locus is essential
for parasite differentiation to the metacyclic stage
in Phlebotomus papatasi. While wild-type and
complemented parasites transform normally in
late-stage infections, generating metacyclic pro-
mastigotes and colonizing the sand fly stomodeal
valve, null parasites accumulate at the earlier elon-
gated nectomonad stage of development within
the abdominal and thoracic midgut of the sand fly.

Complementation with HASPB or SHERP alone
suggests that HASPB is the dominant effector mol-
ecule in this process.

Introduction

Kinetoplastid parasites of the genus Leishmania cause a
diverse spectrum of infectious diseases, the leishma-
niases, in tropical and subtropical regions of the world
(Murray et al., 2005; Chappuis et al., 2007; Reithinger
et al., 2007). Mammalian-infective Leishmania species
are divided into two subgenera, Leishmania (Leishmania)
and Leishmania (Viannia), that partially differ in their
developmental cycles within the female sand fly vector
(reviewed in Lainson et al., 1987). In both subgenera,
however, Leishmania undergo transformation from the
intracellular amastigotes taken up in the sand fly blood
meal to flagellated promastigotes of different morpho-
logical forms (described below, using the terminology of
Walters, 1993 and Cihakova and Volf, 1997). Completion
of the parasite life cycle by transmission from vector to
mammalian host requires promastigote differentiation into
non-replicative metacyclic parasites. These forms are
inoculated when the female sand fly takes a second blood
meal (Bates, 2007); the parasites enter resident dermal
macrophages and transform into replicative amastigotes
that can be disseminated to other tissues, often inducing
immuno-inflammatory responses and persistent infection.
The fate of these intracellular parasites determines
disease type, which can range from cutaneous or muco-
cutaneous infection to diffuse cutaneous or the potentially
fatal visceral leishmaniasis (Murray et al., 2005; Chappuis
et al., 2007; Reithinger et al., 2007).

Metacyclogenesis in Leishmania, the end-point of para-
site development in the vector, is induced in vitro by low
pH and nutrient depletion, while reduced tetrahydrobiop-
terin levels may also act as a signal for parasite differen-
tiation (Cunningham et al., 2001; Kumar et al., 2007;
reviewed in Bates, 2008). Metacyclic parasites display
distinctive morphological and biochemical features: they
have a small cell body and relatively long flagellum, are
highly motile and resistant to human complement, thereby

Received 10 April, 2010; revised 29 June, 2010; accepted 9 July,
2010. *For correspondence. E-mail dfs501@york.ac.uk; Tel. (+44)
1904 328843; Fax (+44) 1904 328844.
Re-use of this article is permitted in accordance with the
Terms and Conditions set out at http://www3.interscience.
wiley.com/authorresources/onlineopen.html

Cellular Microbiology (2010) doi:10.1111/j.1462-5822.2010.01507.x

© 2010 Blackwell Publishing Ltd

cellular microbiology



facilitating parasite survival in the host following transmis-
sion (Da Silva et al., 1989). Complement resistance is
associated with presence of an extensive glycocalyx com-
posed chiefly of a complex lipid-anchored glycoconjugate,
lipophosphoglycan (LPG; Turco and Descoteaux, 1992).
Stage-specific expression of LPG and the parasite
surface metalloprotease, GP63, have been monitored in
sand flies by immunohistochemistry (Davies et al., 1990;
Saraiva et al., 1995). Importantly, it has been shown that
modification of LPG during metacyclogenesis facilitates
detachment of Leishmania major from the midgut in the
sand fly species, Phlebotomus papatasi, and is essential
for vector transmission (Sacks and Kamhawi, 2001;
Kamhawi, 2006). Relatively little is known, however, of
parasite factors that promote later stages of development
and their role in metacyclic transmission. Here we show
that the stage-specific HASP (hydrophilic acylated surface
protein) and SHERP (small hydrophilic ER-associated
protein) proteins of L. major are essential for metacyclo-
genesis in the vector P. papatasi.

HASP and SHERP genes are encoded on the same
segment of chromosome 23 (originally named the
LmcDNA16 locus; Flinn and Smith, 1992) in both Old
and New World Leishmania species, while similar but
divergent sequences are found at the same location in
the genome of L. (Viannia) braziliensis (D. Depledge,
unpublished). The Leishmania-specific HASPs, charac-
terized mainly by work on HASPB, are expressed on the
plasma membrane of infective parasite stages only
(metacyclics and amastigotes) and show both inter- and
intra-specific variation, principally in their characteristic
repetitive amino acid domains (Flinn et al., 1994; Ranga-
rajan et al., 1995; McKean et al., 1997a; Alce et al.,
1999; Denny et al., 2000). The smallest HASPs, the
HASPAs (McKean et al., 1997b), lack these repeats,
which are the only HASP domains showing some simi-
larity to other proteins: specifically to the peptidoglycan-
and immunoglobulin-binding domains of several bacterial
surface proteins (Flinn et al., 1994). The HASPs are
dually acylated by the N-terminal addition of myristate
and palmitate, co- and post-translational modifications
that are essential for plasma membrane trafficking
(Denny et al., 2000). HASP function has been investi-
gated in mutant parasites generated by targeted deletion
of the whole LmcDNA16 locus (McKean et al., 2001). In
vitro, these null parasites can undergo metacyclogen-
esis, are taken up by macrophages and survive in
numbers comparable to wild type; in vivo they cause
more rapid infection than wild-type parasites in suscep-
tible BALB/c mice. In contrast, null parasites comple-
mented by re-expression of the LmcDNA16 locus from
an episome (that causes constitutive overexpression) are
completely avirulent, probably due to pleiotrophic effects
(McKean et al., 2001).

The LmcDNA16 null parasites described above are
also deleted for the SHERP genes, found in close prox-
imity within the HASP locus in all Leishmania species
examined to date. SHERP is expressed in metacyclic
parasites in culture, being the only well-validated protein
marker exclusive to this stage (and not expressed in
amastigotes; Knuepfer et al., 2001). The SHERP open
reading frame is expressed as a 6.2 kDa peripheral mem-
brane protein that localizes, in wild-type metacyclics, to
the cytosolic face of the ER and the outer mitochondrial
membrane. Recent structural analysis suggests that
SHERP is induced to fold by interaction with membrane
lipids (B. Moore, unpublished) but the function of this
unusual small protein is otherwise unknown.

Given the specific and high-level expression of HASP
and SHERP products in metacyclics, and the critical role
of these parasite stages in successful parasite transmis-
sion, we are using null and complemented mutant lines
to investigate HASPB and SHERP function in the sand
fly. Here, we confirm that stage-specific expression of
each protein, as observed in culture, is also found in the
vector although the detection of SHERP precedes that of
HASPB. In contrast to earlier in vitro observations,
however, loss of both proteins in the null parasites
results in failure to produce metacyclics, decreased pro-
duction of short promastigotes and lower colonization of
the stomodeal valve (SV) region in late-stage infections
in the sand fly. Conversely, complementation of the
whole locus restores metacyclic production and SV colo-
nization, while complementation with either HASPB
alone or SHERP alone partially restores the wild-type
phenotype. These data suggest that the HASP/SHERP
proteins are critical for development of wild-type para-
sites in the sand fly and may therefore be essential in
vector transmission.

Results

Expression of HASPB and SHERP during
differentiation in culture

HASPB and SHERP expression have been shown previ-
ously to correlate with parasite differentiation in culture,
using mixed populations of promastigotes grown from log
to stationary phase and sampled at fixed time points
(Flinn et al., 1994; Knuepfer et al., 2001). To confirm the
relative temporal expression of these two stage-regulated
proteins, freshly differentiated L. major Friedlin promas-
tigotes, derived from amastigotes isolated from the lymph
nodes of susceptible mouse strains (as described in
Depledge et al., 2009), were subject to minimum passage
in culture prior to analysis over a time-course. Growth is
not synchronized under these conditions, as shown by
microscopic analysis of the relative numbers of procyclic,
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pre-metacyclic and metacyclic parasites over time (see
Experimental procedures). Parasites were sampled at
24 h intervals from day 2 post-inoculation (when 99% of
cells are procyclic) and total cell lysates (containing
equivalent parasite numbers) analysed by immunoblot-
ting with antibodies specific for HASPB and SHERP. As
shown in Fig. 1A, both proteins show increased expres-
sion from day 4 (when 70% or cells are pre-metacyclic
and 25% metacyclic) to day 7, when > 50% of viable
parasites are of high motility, resistant to peanut lectin
agglutination and can be classified as metacyclic pro-
mastigotes (see Fig. 2D). Comparison of the relative
signals for the two proteins by densitometry, however,
shows that SHERP expression is stabilized by 6 days
while HASPB expression continues increasing to day 7
(Fig. 1B), suggesting that there are temporal differences
in the expression of each molecule in these mixed para-
site populations.

Generation of new complemented lines for vector
transmission studies

Previous analysis of genetically manipulated clones of L.
major Friedlin either null for or complemented with the
complete LmcDNA16 locus encoding HASP and SHERP
genes failed to show a phenotype distinct to wild-type
parasites in culture or after macrophage infection in vitro
and in vivo (McKean et al., 2001). In these experiments,
the ‘add-back’ parasites were avirulent, an observation
interpreted as an overexpression phenotype due to the
excessive amounts, and loss of regulated expression, of
the HASP and SHERP proteins from the complementing
plasmid. In Fig. 1C, comparing lysates of log-phase
promastigotes of wild-type L. major Friedlin (FVI) with
the three complemented lines (+HASPB, +SHERP and
+cDNA16) described in McKean et al. (2001) after 3 days
in culture, it is evident that both HASPB and SHERP are
overexpressed in the single add-back lines. Similarly, the
open reading frames of the LmcDNA16 locus (HASPB,
HASPA and SHERP) are all overexpressed following
complementation with the complete locus as compared
with the wild-type parasites, in which only low levels of
SHERP and the HASPs are detectable at this stage of the
parasite life cycle (Fig. 1C). Before proceeding to sand fly
transmission experiments therefore we generated a new
complemented line expressing a single copy of the
LmcDNA16 locus, coupled with a constitutively expressed
NEO gene reintroduced into one allele of the original
locus, thereby generating a heterozygous add-back para-
site line. Correct genomic integration of the LmcDNA16
complementation cassette (Fig. 2A) was confirmed by
Southern blot analysis (Fig. 2B). In the clones analysed
here, the NEO probe hybridizes to a single fragment of
4.8 kb in the complemented double replacement clone

2 d 3 d 4 d 5 d 6 d 7 d
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Fig. 1. A. Expression of HASPB and SHERP during growth of L.
major in culture. Immunoblot analysis of early passage wild-type
parasites sampled over 7 days in culture. Whole-cell lysates
(1 ¥ 106 parasites per track) were separated by SDS-PAGE and
the gels immunoblotted with polyclonal antisera against HASPB
(10% gel) or SHERP (15% gel). Probing with anti-EF1a (15% gel
shown here) was used as an additional loading control.
B. Densitometric analysis of HASPB/SHERP bands in (A)
normalized to parasite numbers; values shown for each protein are
relative to day 7.
C. Expression of HASPB and SHERP complemented L. major after
3 days in culture. Samples were prepared as in (A) and the
immunoblots (taken from 10% gels) probed with anti-HASPB (upper
blot), anti-SHERP (lower blot) and anti-NMT (as a loading control
for both blots). FVI, wild-type parasites; +HASPB, LmcDNA16 null
complemented with pTEX HASPB; +SHERP, LmcDNA16 null
complemented with pTEX SHERP; +cDNA16, LmcDNA16 null
complemented with pTEX LmcDNA16 (all mutants are described in
McKean et al., 2001). Molecular masses are indicated on the left of
the blots.
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Fig. 2. Targeted deletion and complementation of the LmcDNA16 locus.
A. Schematic diagram of the LmcDNA16 locus and the plasmid constructs used for deletion and complementation. Flanking sequences used
to generate the targeting vectors are shown. The top panel shows the LmcDNA16 locus, which contains two tandem identical copies of the
SHERP gene, two non-tandem identical copies of the HASPA gene and a single copy of the HASPB gene. The HASPB open reading frame is
highly similar to that of HASPA except for an additional repeat region (McKean et al., 1997a), indicated here by vertical line shading. The
second panel shows the plasmid constructs used for targeted deletion of the locus as described previously (McKean et al., 2001) in which the
locus was replaced by hygromycin/puromycin resistance genes (HYG/PAC). The third panel shows the plasmid construct used to produce a
complemented parasite line in this study. This sequence contains flanking regions sharing identity with two sections of the deletion construct:
the 5′ flanking region and the DHFR 3′UTR which is found downstream of the HYG/PAC genes. Correct integration of the complementation
construct will replace either HYG or PAC with a single copy of the LmcDNA locus plus a copy of the neomycin resistance gene (NEO). Solid
black bars represent fragments used as hybridization probes.
B. Southern blot analysis of wild-type and mutant parasite lines. The following lines were analysed: wild type (FVI), HYG/PAC double
replacement clone (DcDNA16::HYG/DcDNA16::PAC, KO) and a complemented double replacement clone in which the PAC gene had been
replaced with a single copy of the cDNA16 locus (DcDNA16::HYG/DcDNA16::PAC/DPAC::cDNA16, Kin). Five micrograms of genomic DNA
from each parasite line was digested with SacI, size separated through 0.8% agarose, blotted and hybridized with DIG-labelled DNA probes
(~200 bp) as indicated.
C. Immunoblotting of wild-type and mutant parasite lines as in (B). Whole-cell lysates taken from parasites grown in culture for 2–7 days were
separated by 10% (HASPB, EF1a) or 15% (SHERP) SDS-PAGE and immunoblots probed with polyclonal antisera raised against L. major
HASPB and SHERP. A monoclonal antibody recognizing the constitutively expressed protein EF1a (clone CBP-KK1, Millipore) was used to
confirm equivalent protein loading. Approximately 1 ¥ 106 parasites were loaded per lane.
D. Expression of HASPB and LPG in metacyclic promastigotes of wild-type and mutant parasite lines (described in B and C). Parasites
grown in culture for 7 days were agglutinated with peanut lectin and non-agglutinated cells fixed and permeabilized prior to indirect
immunofluorescence analysis. DAPI (blue), nuclear and kinetoplast DNA; HASPB (green), 3F12 (red), antibodies specific for metacyclic LPG
and HASPB respectively; DIC, differential interference contrast image. Size bar = 5 mm.
E. Wild-type and mutant parasite lines (described in B and C) secrete proteophosphoglycans. Pellets prepared by ultracentrifugation of
parasite culture supernatants (SN) or whole parasite lysates (PL) were separated by SDS-PAGE and blotted (arrow indicates boundary
between 4% stacking gel and 12% resolving gel). The immunoblot was probed with monoclonal antibody LT6 (polyclonal rabbit antiserum
against PPG; Ilg et al., 1993).
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(Kin) and this is absent from wild-type (FVI) and null (KO)
parasites. The PAC gene is found on a single fragment of
3.8 kb in the null clone but is absent as expected in
wild-type DNA. The PAC gene is also absent from the Kin
clone, demonstrating that the PAC cassette has been
replaced with NEO in these cells. As expected, neither
HASPB nor SHERP is detected in the null clone. The
HASP probe hybridizes in wild-type cells to fragments of
7.6 kb, 4.3 kb and 2.2 kb, corresponding to the expected
sizes of HASPA2, HASPA1 and HASPB respectively. The
4.3 kb and 2.2 kb bands (HASPA1 and HASPB) are also
seen in the Kin clone, together with a band of 4.8 kb
representing HASPA2 plus the inserted NEO gene. The
SHERP probe is detected as two bands of 1.8 kb and
1.6 kb (corresponding to SHERP1 and SHERP2 respec-
tively) in both the wild-type and Kin clone. These data
verify the genetic structure of the inserted add back
(which has subsequently been confirmed by DNA
sequencing and comparison to GenBank entry
AJ237587.1).

Immunoblotting of lysates taken from the Kin line and
wild-type parasites collected over a 7-day time-course
was used to verify regulated expression of the HASPB
and SHERP proteins in the complemented Kin parasites.
As shown in the clones analysed in Fig. 2C, a similar
temporal pattern of expression of HASPB and SHERP is
detected in both wild-type and add-back cells, although

the relative levels of expression are lower in the Kin para-
sites, as would be expected in a heterozygous add-back
line.

To correlate these observations with expression spe-
cifically in metacyclic stages, parasites of the Kin and
null lines, together with wild-type cells, were grown to 7
days in culture and then agglutinated with peanut lectin.
Non-agglutinated parasites (defined as metacyclics in
culture and in infected sandflies using the metacyclic
LPG-specific antibody, 3F12; Sacks and da Silva, 1987;
Saraiva et al., 1995) were then analysed by indirect
immunofluorescence using confocal microscopy. As
shown in Fig. 2D, non-agglutinated parasites from all
three lines have the typical metacyclic morphology of
short body and relatively long flagellum. As a conse-
quence, the nucleus and kinetoplast are located close
together, as detected by DAPI staining of their DNA. All
three lines are also cross-reactive with 3F12, which pro-
duces a punctuate staining pattern under the fixation
conditions used with confocal microscopy. Only the wild-
type and Kin parasites express HASPB, as expected.
These observations using a defined metacyclic LPG
marker confirm that the null parasites can undergo
metacyclogenesis as reported previously (McKean et al.,
2001).

To further characterize and compare the phenotype of
the new Kin line with the null and wild-type parasites
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(independently from detection of either HASPB or meta-
cyclic LPG), total glycoconjugate production was moni-
tored in parasite lysates and secretory fractions of
late-log-phase parasites (day 5 post-inoculation). The
antibody used for detection, LT6 (Ilg et al., 1993), recog-
nizes the galactose-mannose-phosphate disaccharide
repeat units of LPG and secreted proteophosphoglycan
(PPG; Rogers et al., 2004). As shown in Fig. 2E, LPG is
detected in total lysates from wild-type, KO and Kin para-
sites while secreted PPG is also abundant in the culture
supernatant from all three lines. While this analysis would
not detect structural differences between the different gly-
coconjugate fractions, these data demonstrate that PPG
secretion is not compromised following deletion of the
LmcDNA16 locus, at least in vitro. In vivo, PPG is
secreted by short (leptomonad) promastigotes in Leish-
mania mexicana (Rogers et al., 2002), some of which
differentiate into metacyclic parasites primed for transmis-
sion (Bates, 2007). Our observation of PPG secretion by
the KO L. major parasites described above suggests that
in vitro differentiation can generate elongated necto-
monads and short promastigotes in this line.

Development of LmcDNA16 mutant parasites
in P. papatasi

To investigate a potential role for the HASP and SHERP
genes in vector transmission, we used wild-type promas-
tigotes of L. major Friedlin and the three mutant lines
described in McKean et al. (2001): LmcDNA16 double-
knockout or null (KO; DcDNA16::HYG/DcDNA16::PAC),
LmcDNA16 double-knockout complemented with episo-
mal HASPB (+HASPB; DcDNA16::HYG/DcDNA16::PAC
[pTEX NEO HASPB], as used in Fig. 1C) and LmcDNA16
double-knockout complemented with episomal SHERP
(+SHERP; DcDNA16::HYG/DcDNA16::PAC [pTEX
NEO SHERP], as used in Fig. 1C). In addition, the
new add-back line described above, DcDNA16::HYG/
DcDNA16::PAC/DPAC::cDNA16 (Kin), was used instead
of the original episomally complemented parasites analy-
sed in Fig. 1C (+cDNA16; McKean et al., 2001). Female
sand flies were infected by feeding through a chick-skin
membrane on heat-inactivated rabbit blood containing
promastigotes of each parasite line. Engorged sand flies
were dissected over a time-course post-blood meal (PBM)
and the location and rates of infection in the digestive tract
determined by dissection and light microscopy. Parasite
loads were also confirmed by quantitative PCR (qPCR)
analysis of dissected guts.

Dissections of these sand fly females showed that all L.
major lines were able to develop heavy infections in P.
papatasi. However, quantitative differences in parasite
load between the lines occurred after defecation on day 5
PBM and on day 12 (Fig. 3). Results of qPCR analysis

revealed that differences between the wild-type strain
(FVI), double-knockout (KO) and complemented (Kin)
lines in parasite loads were not significant in late-stage
infections (Fig. 4A). However, infections with +HASPB
were significantly less abundant than wild-type infections
(P = 0.0005, U = 197.0, Z = 3.470) while +SHERP infec-
tions were even less abundant than +HASPB infections
(P = 0.0339, U = 306.5, Z = 2.122; Fig. 4B).

After escape from the peritrophic matrix, L. major
development within the midgut of P. papatasi involves
transformation of elongated nectomonads to short pro-
mastigotes (leptomonads in the terminology of Rogers
et al., 2002) and highly motile metacyclic forms. Para-
sites migrate to the thoracic part of the midgut and colo-
nize the SV; forms that attach to the SV are called
haptomonads. In the experiments described in Table 1,
significant differences were observed in the location of
infections within the infected sand flies. Wild-type (FVI),
complemented (Kin) and +HASPB lines showed heavy
colonization of the SV with many haptomonads firmly
adhering to its chitinous lining. Conversely, null parasites
(KO) did not colonize the SV (only one female from 97
dissected by days 9 and 12 PBM had weak colonization
of the SV), although the anterior part of the thoracic
midgut near the SV, named the cardia, was reached by
elongated nectomonads quite early after infective
feeding (57% of infected flies by day 5 PBM). The
+SHERP parasites colonized the SV in a small percent-
age of infected sand flies; only nine females from 82
dissected by 9 and 12 days PBM had short promastig-
otes weakly attached to the SV. Similarly to the null line,
the parasite population of the +SHERP line consisted
mostly of elongated nectomonads.

Differences between the five L. major lines in the
presence and size of the four morphological categories
(elongated nectomonads, short promastigotes, meta-
cyclic promastigotes and round forms) were significant
at all time intervals tested (Fig. 5, Table 2). However,
the following similarities between lines were observed:
(i) the FVI and +HASPB lines had shorter bodies and
higher proportions of short and metacyclic promastigotes
then the other three lines at 9 and 12 days PBM, (ii) the
FVI and Kin lines had shorter bodies and lower numbers
of elongated nectomonads than the other three lines
at 5 days PBM, and (iii) the KO and +SHERP lines
had longer bodies and higher proportions of elongated
nectomonads than the other lines at 9 and 12 days
PBM.

Although all five L. major lines were able to develop
heavy late-stage infections in P. papatasi, the observed
differences in both the locations of the infections in the fly
and the parasite morphology allows the division of the
tested lines into two groups. The first of these is com-
posed of the wild-type FVI strain and the Kin and +HASPB
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c2 = 13.357, d.f. = 12; day 12 PBM, P < 0.0001, c2 = 41.544, d.f. = 12. Numbers above each bar, number of flies analysed.
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lines, which all showed classical Leishmania development
with transformation of elongated nectomonads to short
promastigotes and metacyclic promastigotes and coloni-
zation of the SV in late-stage infections. Parasites of the
second group, consisting of null and +SHERP mutants,
remained mostly in the stage of elongated nectomonads
and colonized the abdominal and thoracic midgut but not
the SV.

To correlate the identity of parasite stages defined by
morphology in the sand fly with expression of stage-
specific markers, antibodies specific for HASPB, SHERP
and metacyclic LPG were used for indirect immunofluo-
rescence microscopy. The stage specificity of these
reagents in the sand fly is illustrated in Fig. 6 which shows
their reactions with wild-type L. major dissected from
infected flies in late-stage infections. Staining with the
3F12 antibody specific for metacyclic LPG (Sacks and da
Silva, 1987) identified metacyclic promastigotes only, with
no recognition of short promastigotes or elongated necto-
monads (Fig. 6, images a–d). Similarly, anti-HASPB also
showed specificity for metacyclic parasites and no cross-
reactivity with the previous developmental stages (Fig. 6,
images e–h). Conversely, while anti-SHERP also identi-

fied metacyclics, it also cross-reacted with short promas-
tigotes but not with elongated nectomonads (Fig. 6,
images i–l). With this knowledge, the same antibodies
were used to monitor how the frequency of the various
morphological forms differed between smears taken from
individual flies (Fig. 7).

At 5 days PBM, no positive reaction was detected with
either the HASPB or SHERP antibodies (results not
shown). In all Leishmania lines at later stages of infection
(9 or 12 days PBM), 3F12 and anti-HASPB reacted only
with parasite stages identified morphologically as meta-
cyclics (Fig. 7A and B), as described above for the wild-
type strain. Conversely, SHERP antibodies reacted not
only with metacyclics but also with some short promastig-
otes of the wild-type strain and Kin line (Fig. 7C and D).
These positively staining parasites may represent some
intermediate forms with flagella not long enough to allow
identification as metacyclic cells. Generally, the highest
percentage of promastigotes morphologically identified
as metacyclics was found in the wild-type FVI strain
(23–36%) and the lowest in the null line (0–3%). The
metacyclic LPG antibody, 3F12, positively identified meta-
cyclic parasites in four of the five lines tested at 9 or 12

Table 1. Location of parasites in P. papatasi infected with the lines described in Fig. 3.

Days
PBM

Leishmania
line

Endoperitrophic
space

AMG
only

AMG and
TMG

AMG, TMG
and cardia

Colonized
SV

2 FVI 100 0 0 0 0
KO 100 0 0 0 0
Kin 100 0 0 0 0
+HASPB 100 0 0 0 0
+SHERP 100 0 0 0 0

5 FVI 0 11.5 42.3 44.2 1.9
KO 0 8.7 34.8 56.5 0.0
Kin 0 20.8 45.8 33.3 0.0
+HASPB 0 26.1 30.4 43.5 0.0
+SHERP 0 17.6 47.1 35.3 0.0

9 FVI 0 5.1 13.6 39.0 42.4
KO 0 3.4 6.9 89.7 0.0
Kin 0 17.9 10.7 50.0 21.4
+HASPB 0 3.1 15.6 46.9 34.4
+SHERP 0 3.4 37.9 48.3 10.3

12 FVI 0 4.4 4.4 30.9 60.3
KO 0 6.3 18.8 72.9 2.1
Kin 0 14.3 9.5 38.1 38.1
+HASPB 0 2.9 5.7 34.3 57.1
+SHERP 0 0.0 18.5 59.3 22.2

Leishmania infections in the sand fly digestive tract at 2, 5, 9 and 12 days PBM were analysed by dissection and examination by light microscopy.
The % of infected flies found in each location is shown. AMG, abdominal midgut; TMG, thoracic midgut; SV, stomodeal valve.
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days PBM but no metacyclics were found in the null
parasite infections. Anti-HASPB reacted positively with
metacyclic parasites of three lines (FVI, +HASPB and Kin)
but not with the null and +SHERP lines, as expected.
Negative reaction of anti-SHERP antibodies was
observed with KO and +HASPB lines as expected but,
surprisingly, also with parasites of the +SHERP line, both
as metacyclics and as short promastigotes. These results
suggest not only that SHERP function may be required at
an earlier stage than HASPB function but also that
HASPB expression may be required for SHERP activity
in vivo.

Discussion

In this article, we reveal a novel role for two previously
described Leishmania proteins that show stage-specific
expression, at both the RNA and protein level, during the
parasite life cycle (Flinn and Smith, 1992; Flinn et al.,
1994; Knuepfer et al., 2001). As originally demonstrated
under in vitro culture conditions, and here confirmed
during development in P. papatasi, the HASPB and
SHERP proteins are highly upregulated in infective meta-
cyclic stages, with SHERP also showing low-level
expression in the preceding short promastigote stage in
the vector. Neither protein is detectable at earlier devel-
opmental stages in the sand fly, definitively confirming

the stage-specific expression of these molecules. Low-
level HASPB and SHERP signal can be observed in
logarithmic phase culture due to a lack of synchrony in
parasite growth and differentiation and the presence of a
mixture of parasite stages in the starting inoculum. These
practical issues are partially resolved by using low-
passage parasites that exhibit higher expression levels
of both proteins (see Fig. 1A). Under these conditions,
SHERP expression peaks before maximum HASPB
expression, likely correlating with its detection in short
promastigotes although these cannot be definitively iden-
tified in culture.

The observations above confirm the utility of HASPB as
a marker for metacyclogenesis in L. major and suggest a
vital role for both HASPB and SHERP either in this differ-
entiation process and/or in the metacyclic parasite.
HASPB in L. major is transported to the plasma mem-
brane, a process requiring N-terminal modification by
acylation (Denny et al., 2000). At this location, it can be
detected externally on both the cell body and flagellum,
most recently by imaging in live parasites (L. Maclean,
unpublished). Our current model proposes that HASPB
can be shed on macrophage entry, a process that could
optimize presentation to the host immune system.
Recombinant Leishmania donovani HASPB is a target for
recognition by B-1 B cell-derived natural antibodies, with
the resulting immune complexes triggering classical
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Table 2. Dimensions of the morphological forms of the lines described in Fig. 3 during development in P. papatasi at 2, 5, 9 and 12 days PBM.

Days

PBM Leishmania strain

Morphological

form n

Body length Body width Flagellar length

Mean (SD)

(mm)

Range

(mm)

Mean (SD)

(mm)

Range

(mm)

Mean (SD)

(mm)

Range

(mm)

5 FVI EN 230 19.0 (3.3) 14.9–34.5 1.5 (0.5) 0.7–3.3 18.3 (2.4) 13.3–25.5
SP 74 11.5 (1.9) 5.0–13.5 1.9 (0.6) 0.7–4.5 14.4 (2.9) 5.0–19.9
MP 13 8.1 (1.6) 5.0–9.9 1.6 (0.1) 1.5–1.7 17.8 (2.4) 14.9–21.6
RF 3 4.4 (0.9) 3.3–5.0 2.2 (0.9) 1.6–3.3 13.8 (3.5) 10.0–16.6
Total 320 16.7 (4.8) 3.3–34.5 1.6 (0.6) 0.7–4.5 17.3 (3.0) 5.0–25.5

KO EN 149 19.7 (3.4) 15.0–30.0 1.4 (0.3) 0.7–1.5 17.2 (2.4) 12.0–25.5
SP 10 12.1 (1.1) 10.5–13.5 1.5 (0.0) 1.5–1.5 13.5 (2.5) 9.0–18.0
MP 1 4.5 1.5 15.0
Total 160 19.1 (3.9) 4.5–30.0 1.4 (0.3) 0.7–1.5 17.0 (2.6) 9.0–25.5

Kin EN 122 18.3 (2.4) 15.0–25.5 1.4 (0.5) 0.7–3.0 17.1 (2.2) 9.0–24.0
SP 35 12.3 (1.3) 9.0–13.5 1.7 (0.6) 0.7–3.0 14.1 (2.6) 9.0–21.0
MP 2 8.25 (1.0) 7.5–9.0 1.1 (0.5) 0.7–1.5 18.7 (1.1) 18.0–19.5
Total 160 16.8 (3.6) 7.5–25.5 1.4 (0.5) 0.7–3.0 16.4 (2.6) 9.0–24.0

+HASPB EN 156 20.6 (2.9) 14.9–28.2 1.7 (0.3) 0.8–3.3 20.2 (2.3) 14.9–26.6
SP 4 11.2 (1.6) 9.9–13.3 1.7 (0.0) 1.7–1.7 16.2 (5.5) 10.0–21.6
Total 160 20.4 (3.2) 9.9–28.2 1.7 (0.3) 0.8–3.3 20.1 (2.5) 10.0–26.6

+SHERP EN 151 19.0 (2.4) 14.9–24.9 1.7 (0.4) 0.8–3.3 18.3 (2.0) 13.3–24.9
SP 9 11.8 (2.2) 8.3–13.3 1.7 (0.0) 1.7–1.7 15.5 (2.9) 13.3–19.9
Total 160 18.6 (2.9) 8.3–24.9 1.7 (0.4) 0.8–3.3 18.1 (2.2) 13.3–24.9

9 FVI EN 64 16.7 (2.6) 15.0–25.5 1.6 (0.4) 0.7–3.0 17.0 (2.5) 13.5–24.0
SP 183 10.6 (2.2) 4.5–13.5 1.6 (0.5) 0.7–3.3 13.3 (2.9) 4.5–21.6
MP 66 7.3 (1.7) 4.5–12.0 1.5 (0.4) 0.7–3.0 16.3 (3.3) 10.0–24.0
RF 7 4.0 (0.7) 3.3–5.0 4.1 (0.7) 3.3–5.0 14.1 (5.3) 8.3–24.9
Total 320 11.0 (3.9) 3.3–25.5 1.7 (0.6) 0.7–5.0 14.7 (3.4) 4.5–24.9

KO EN 126 18.6 (3.6) 15.0–30.0 1.5 (0.3) 0.7–3.0 18.5 (3.3) 12.0–27.0
SP 28 10.9 (1.8) 6.0–13.5 2.2 (1.0) 0.7–4.5 14.1 (4.3) 4.5–22.5
MP 4 9.7 (1.5) 7.5–10.5 2.2 (0.9) 1.5–3.0 19.9 (3.3) 15.0–22.5
RF 2 4.5 (0.0) 4.5–4.5 4.5 (0.0) 4.5–4.5 12.7 (7.4) 7.5–18.0
Total 160 16.9 (4.8) 4.5–30.0 1.7 (0.7) 0.7–4.5 17.7 (3.9) 4.5–27.0

Kin EN 60 17.1 (2.7) 15.0–24.0 1.6 (0.5) 0.7–3.0 15.8 (2.4) 10.5–22.5
SP 92 10.8 (2.0) 4.5–13.5 1.6 (0.7) 0.7–4.5 12.6 (2.1) 7.5–19.5
MP 8 7.9 (1.6) 6.0–10.5 1.5 (0.0) 1.5–1.5 17.2 (3.0) 12.0–22.5
Total 160 13.0 (3.9) 4.5–24.0 1.6 (0.6) 0.7–4.5 14.0 (2.8) 7.5–22.5

+HASPB EN 32 16.0 (0.8) 14.9–16.6 1.6 (0.4) 0.8–2.5 16.8 (2.0) 11.6–19.9
SP 102 11.0 (1.8) 6.6–13.3 1.6 (0.3) 0.8–3.3 13.4 (2.2) 6.6–19.9
MP 23 7.4 (1.4) 5.0–10.0 1.7 (0.0) 1.7–1.7 15.8 (2.2) 10.0–19.9
RF 3 5.0 (2.9) 3.3–8.3 3.9 (0.9) 3.3–5.0 7.2 (2.5) 5.0–10.0
Total 160 11.4 (3.1) 3.3–16.6 1.6 (0.5) 0.8–5.0 14.3 (2.8) 5.0–19.9

+SHERP EN 98 19.4 (2.9) 14.9–29.9 1.6 (0.4) 0.8–3.3 19.1 (2.8) 13.3–30.0
SP 61 11.1 (1.8) 8.3–13.3 1.5 (0.4) 0.8–2.5 13.9 (2.5) 6.6–19.9
MP 1 8.3 0.8 16.6
Total 160 16.2 (4.8) 8.3–29.9 1.6 (0.4) 0.8–3.3 17.1 (3.7) 6.6–30.0

12 FVI EN 31 15.6 (1.0) 15.0–18.3 1.9 (0.7) 0.7–4.5 14.9 (2.2) 10.5–19.5
SP 244 9.9 (2.2) 4.5–13.5 1.8 (0.8) 0.7–6.0 11.3 (2.9) 0.0–18.3
MP 40 6.6 (1.4) 4.5–9.0 1.6 (0.5) 0.8–3.3 15.1 (3.3) 9.0–22.5
RF 5 6.5 (1.4) 5.0–7.5 5.0 (0.6) 4.5–6.0 5.8 (5.5) 0.0–11.6
Total 320 10.0 (2.9) 4.5–18.3 1.8 (0.9) 0.7–6.0 12.0 (3.4) 0.0–22.5

KO EN 105 17.2 (2.3) 15.0–22.5 1.6 (0.6) 0.7–3.0 15.1 (2.3) 9.0–22.5
SP 54 11.7 (1.7) 7.5–13.5 1.9 (0.8) 0.7–3.0 11.9 (3.1) 6.0–21.0
RF 1 7.5 4.5 9.0
Total 160 15.3 (3.4) 7.5–22.5 1.7 (0.7) 0.7–4.5 14.0 (3.0) 6.0–22.5

Kin EN 82 19.2 (4.1) 14.9–28.2 1.7 (0.4) 0.8–3.3 18.7 (4.5) 11.6–28.2
SP 68 11.9 (1.7) 6.6–13.3 1.9 (0.6) 0.8–3.3 13.4 (2.4) 8.3–19.9
MP 8 8.3 (1.5) 5.0–10.0 2.2 (0.8) 1.7–3.3 17.6 (4.2) 10.0–24.9
RF 2 8.3 (4.7) 5.0–11.6 5.0 (0.0) 5.0–5.0 16.6 (2.3) 14.9–18.3
Total 160 15.4 (5.0) 5.0–28.3 1.8 (0.6) 0.8–5.0 16.4 (4.5) 8.3–28.2

+HASPB EN 14 15.9 (1.1) 15.0–18.3 1.9 (0.6) 0.8–3.3 15.8 (1.1) 14.9–18.3
SP 124 10.6 (2.0) 6.6–13.3 1.7 (0.4) 0.8–3.3 13.0 (2.4) 6.6–19.9
MP 21 7.1 (1.5) 5.0–10.0 1.8 (0.5) 1.7–3.3 14.9 (2.5) 10.0–19.9
RF 1 5.0 3.3 8.3
Total 160 10.6 (2.8) 5.0–18.3 1.7 (0.5) 0.8–3.3 13.4 (2.6) 6.6–19.9

+SHERP EN 97 18.2 (2.1) 14.9–23.2 1.8 (0.4) 0.8–3.3 17.8 (2.1) 11.6–23.2
SP 60 11.3 (1.9) 8.3–13.3 1.7 (0.6) 0.8–3.3 13.0 (2.4) 8.3–19.9
MP 2 5.0 (0.0) 5.0–5.0 2.5 (1.2) 1.7–3.3 11.6 (2.3) 10.0–13.3
RF 1 6.6 6.6 16.6
Total 160 15.4 (4.2) 5.0–23.2 1.8 (0.6) 0.8–6.6 15.9 (3.2) 8.3–23.2

Promastigotes from gut smears were measured by light microscopy with an oil-immersion objective.
EN, elongated nectomonads; SP, short promastigotes; MP, metacyclic promastigotes; RF, round forms.
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complement pathway activation, leading to IL-4 secretion,
CD8+ T cell priming and vaccination against parasite
infection in immuno-compromised mice (Stager et al.,
2003). Whether HASPB is shed from metacyclics in the
vector has not yet been established.

SHERP, in contrast to HASPB, is a peripheral mem-
brane protein that is not expressed by parasites in the
host. In wild-type promastigotes, SHERP is localized to
the cytosolic face of the ER and the outer mitochondrial
membrane (Knuepfer et al., 2001), with recent biochemi-
cal and structural analysis suggesting that membrane
lipid interactions may drive the function of this unusual
small protein (B. Moore, unpublished). Another potential
focus for SHERP interactions is with the vacuolar
ATPase protein complex, a membrane-localized pump
that drives proton transport across the eukaryotic plasma
membrane but also functions in acidification of subcellu-
lar compartments, including those within the endosomal/
lysosomal system (Sun-Wada et al., 2004). This may be
of particular significance in metacyclic parasites given
the recent identification of autophagy as a key process in

parasite differentiation and virulence (Besteiro et al.,
2006; 2007). In cultured L. major, dividing promastigotes
are characterized by a multivesicular body-like network
that matures into a lysosomal-like structure of high lytic
capacity and low pH in metacyclic parasites. Given
SHERP’s intracellular localization to ER and mitochon-
drial membranes in L. major (Knuepfer et al., 2001) and
the potential for both membrane types to be processed
by autophagic digestion, perhaps SHERP plays a regu-
latory role in vacuolar acidification during autophagy in
the vector.

Genetic analysis of parasite mutants has been critical
for the analysis and confirmation of gene function in
Leishmania species (e.g. Spath et al., 2003; Ortiz et al.,
2007). However, parasites deleted for the LmcDNA16
locus containing HASP and SHERP genes failed to
present a phenotype distinct from wild-type parasites
when used directly to infect either cultured macrophages
or susceptible BALB/c mice in vivo, while ‘add-back’
clones yielded phenotypic features consistent with protein
overexpression (McKean et al., 2001). Of particular note,
the null parasites were able to undergo metacyclogenesis
in vitro, as monitored by analysis of stage-specific tran-
script patterns and resistance to agglutination with peanut
lectin. These observations suggested that the products of
the HASP/SHERP locus did not play a role in parasite
differentiation (McKean et al., 2001). Importantly, the
mouse infection experiments were initiated by high-dose
needle injection of metacyclic-rich parasite populations
rather than by experimental inoculation by sand fly bite,
an approach that mimics parasite transmission in vivo.

Results presented in this article confirm that the
LmcDNA16 null parasites described above can differenti-
ate into metacyclics in vitro, as defined by expression of
the 3F12 epitope on metacyclic LPG. We have now devel-
oped a new complemented Kin line expressing HASPB
and SHERP proteins at similar levels to wild-type para-
sites and, importantly, at the correct stage of develop-
ment. These parasites, together with the null line, have
been used to infect female P. papatasi and parasite
growth and differentiation measured following blood meal
digestion, using both morphological and biochemical
markers. The results of these analyses demonstrate con-
clusively that the genetic locus encoding HASPB and
SHERP is essential for metacyclogenesis in the sand
fly: null parasites accumulate at the earlier elongated
nectomonad stage of development and do not colonize
the SV. As a result, we predict that the null mutants cannot
be transmitted to the host by sand fly bite since destruc-
tion of the vector SV has been described to facilitate the
transmission of Leishmania and Trypanosoma parasites
(Volf et al., 2004).

These observations, demonstrating that the
LmcDNA16 null parasites can undergo metacyclogenesis
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Fig. 6. Expression of HASPB, SHERP and metacyclic LPG in
promastigote stages of L. major FVI dissected from P. papatasi at
12 days PBM. Indirect immunofluorescence analysis was carried
out with antibodies specific for each marker: a–d, 3F12 antibody for
metacyclic LPG; e–h, anti-HASPB; i–l, anti-SHERP. Images a, b:
3F12-positive metacyclic promastigotes (MP); image c:
3F12-negative short promastigote (SP); image d: 3F12-negative SP
and elongated nectomonad (EN); images e, f: HASPB-positive
MPs; image g: HASPB-negative SP; image h: HASPB-negative EN;
image i: SHERP-positive MP; image j, SHERP-positive SP; image
k, SHERP-negative SP; image l, SHERP-negative EN. Size
bars = 10 mm.
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in vitro but not in vivo, suggest either that the metacyclic
phenotype observed in the vector and required for para-
site transmission in vivo is not fully replicated in vitro or
that other factors are critical for differentiation in the sand
fly. Perhaps the loss of proteins expressed from this locus
impacts on parasite adhesion, migration or sensitivity
to midgut hydrolases or, alternatively, plays a role in
establishment at the SV. Is the null phenotype observed in
sand flies caused by the lack of HASPB and/or SHERP
function? And what is the role of the HASPA genes
(McKean et al., 1997b) that are also present in the deleted
LmcDNA16 locus and code for HASP proteins lacking the
central repetitive domain of HASPB?

Using the single gene complemented lines (+HASPB
and +SHERP), we have shown that HASPB alone can
complement the null phenotype observed with the KO
parasites, with these parasites able to complete classical
development and colonize the SV in late-stage infec-
tions. However, it should be noted that +HASPB para-
sites overexpress the protein constitutively, a property
shared by the +SHERP line with respect to SHERP
expression. We therefore conclude that while HASPB is
likely to be the dominant molecule in restoring the null

phenotype, modulation of HASPB function by other
factors in metacyclic parasites is not ruled out by these
observations. Clearly, SHERP expression precedes
HASPB expression and it is possible that the functions of
these two proteins are linked during metacyclogenesis.
An additional role for the HASPA proteins in this process
cannot be discounted.

Delineating the function of all genes within the
LmcDNA16 locus and their relative roles in parasite trans-
mission will require an extended study utilizing a range of
new transgenic lines expressing each gene product
appropriately, both quantitatively and temporally. These
approaches may reveal mechanistic details of metacyclo-
genesis within the sand fly and, as a consequence, under-
pin our understanding of transmission of the Leishmania
parasite in vivo.

Experimental procedures

Parasites

Leishmania major Friedlin (MHOM/IL/81/Friedlin/VI; FVI) and
mutant parasites targeted for gene disruption/overexpression at
the LmcDNA16 locus were maintained on blood agar slopes or in
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Fig. 7. Expression of HASPB, SHERP and metacyclic LPG in promastigote stages of the parasite lines described in Fig. 3. Gut smears
obtained by dissection of infected sandflies at day 9 and 12 PBM were analysed by indirect immunofluorescence as described in Experimental
procedures. Promastigotes were measured and their reaction with antibodies was evaluated using Image J software. The % of metacyclic
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culture as previously described (McKean et al., 2001). Low-
passage promastigotes (2–3 cycles post transformation from
mouse-derived amastigotes) were inoculated at 1 ¥ 105 ml-1 and
the culture sampled daily. Parasite numbers, morphology and
motility were monitored by light microscopy, counting > 100 para-
sites per line per time point and scoring for metacyclics (small
body, flagellum ~2¥ body length, high motility), pre-metacyclics
(heterogeneous population of parasites showing shortening body
and moderate motility) and procyclics (extended cell body ~2¥
that of metacyclic parasites with relatively short flagellum).

The mutant lines used were the 4.8 LmcDNA16 double-
knockout (KO; DcDNA16::HYG/DcDNA16::PAC), the 4.8
LmcDNA16 double-knockout complemented with episomal
HASPB (+HASP; DcDNA16::HYG/DcDNA16::PAC [pTEX NEO
HASPB]) and the 4.8 LmcDNA16 double-knockout comple-
mented with episomal SHERP (+SHERP; DcDNA16::HYG/
DcDNA16::PAC [pTEX NEO SHERP]; McKean et al., 2001).

A new complemented (knock-in, Kin) LmcDNA16 line was
generated as described in Fig. 2, by introduction of a linear
fragment containing the complete LmcDNA16 locus plus consti-
tutively expressed NEO gene into its original location on chromo-
some 23 in a heterozygous (LmcDNA16 locus single deletion)
background, using homologous recombination as described in
McKean et al. (2001). Correct genomic integration was confirmed
by DNA blotting, as described. Following rapid passage through
susceptible BALB/c mice (as described in Depledge et al., 2009),
these parasites were also maintained in culture as described
above.

Immunoblotting

Whole parasite lysates were separated by SDS-PAGE as
described (McKean et al., 2001) and blots probed with poly-
clonal antisera against HASPB (Flinn et al., 1994) or SHERP
(Knuepfer et al., 2001). A monoclonal antibody recognizing the
constitutively expressed protein EF1a (clone CBP-KK1, Milli-
pore) or the polyclonal L. major anti-N-myristoyl transferase
(Price et al., 2003) were used to control for equivalent protein
loading.

For PPG analysis, low-passage promastigotes were grown to
late-log-phase and parasite samples collected for lysis and SDS-
PAGE as described above. Culture supernatant was fractionated
by sequential centrifugation at 2200 g (10 min at 3200 rpm) and
100 000 g (60 min at 30 000 rpm) for 10 min. The final superna-
tant was discarded and the pellet lysed in SDS-PAGE gel loading
mix prior to SDS-PAGE analysis using a 3 cm, 4% stacking gel
and a 12% resolving gel. Blots were probed with anti-LT6 (1:500;
the kind gift of Paul Bates, Lancaster University) with detection by
ECLplus (Amersham).

Sand flies and sand fly infections

The colony of P. papatasi was maintained at 26°C on 50%
sucrose and 14 h light/10 h dark photoperiod as described pre-
viously (Benkova and Volf, 2007). Sand fly females were infected
by feeding through a chick-skin membrane on heat-inactivated
rabbit blood containing 106 promastigotes ml-1. Engorged sand
flies were maintained in the same conditions as the colony and
dissected 2, 5, 9 and 12 days PBM. The location of Leishmania
infections in the sand fly digestive tract (foregut, SV, thoracic and

abdominal midgut, and endoperitrophic and ectoperitrophic
space) was determined by dissection and examination by light
microscopy. Parasite loads were estimated by two methods:
infections seen in the gut in situ were graded according to
Myskova et al. (2008) as light (< 100 parasites per gut), moderate
(100–1000 parasites per gut) and heavy (> 1000 parasites per
gut). Alternatively, 30–40 guts from females with late infections
(10–12 days PBM) were individually dissected into NET 50 and
stored in -20°C for qPCR. Sand fly infection experiments were
repeated four times for combinations of wild-type (FVI), KO and
Kin lines and twice for combinations of FVI, +HASPB and
+SHERP lines.

Quantitative PCR

Extraction of total DNA from dissected sand fly guts was per-
formed using a DNA tissue isolation kit (Roche Diagnostics,
Indianapolis, IN) according to the manufacturer’s instructions and
DNA was eluted in 100 ml of EB buffer. qPCR for detection and
quantification of Leishmania parasites was performed in Bio-Rad
iCycler & iQ Real-Time PCR Systems by using the SYBR Green
detection method (iQ SYBR Green Supermix, Bio-Rad, Hercules,
CA). The kinetoplast primers described by Mary et al. (2004)
(forward primer 5′-CTTTTCTGGTCCTCCGGGTAGG-3′ and
reverse primer 5′-CCACCCGGCCCTATTTTACACCAA-3′) were
used (for more details see Myskova et al., 2008). A series of
10-fold dilutions of Leishmania promastigote DNA, ranging from
104 to 10-2 parasites per reaction, was used to mix with DNA from
sand fly females. DNA from uninfected sand flies was used as a
negative control.

Morphometry of parasites

Gut smears of L. major-infected females 5, 9 and 12 days PBM
were fixed with methanol, stained with Giemsa and examined
under the light microscope with an oil-immersion objective. One
hundred and sixty randomly selected promastigotes from four
sand flies/smears were measured in each combination of Leish-
mania line and time PBM. Body length, flagellar length and body
width of parasites were measured and position of the kinetoplast
in relation to the nucleus was examined. Four morphological
forms were distinguished, based on the criteria of Walters (1993)
and Cihakova and Volf (1997): (i) short promastigotes: body
length < 14 mm and flagellar length < 2 times body length; (ii)
elongated nectomonads: body length � 14 mm; (iii) metacyclic
promastigotes: body length < 14 mm and flagellar length � 2
times body length, and (iv) round forms: body width > 4 mm and
body length � 7.5 mm include also paramastigotes with kineto-
plast lateral to the nucleus. We use here the term short promas-
tigotes derived from the terminology of Walters (1993) (short
nectomonad promastigotes) which is the older synonym of lep-
tomonads (leptomonad promastigotes) proposed by Rogers
et al. (2002). Haptomonads cannot be distinguished in this study
as they remain attached to the gut and cannot be measured on
gut smears.

Indirect immunofluorescence

Metacyclic LPG was detected using 3F12 monoclonal antibody
from mouse ascites fluid (Sacks and da Silva, 1987). HASPB and
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SHERP proteins were detected using rabbit polyclonal anti-
HASPB and anti-SHERP, both affinity-purified against recombi-
nant protein (Flinn et al., 1994; Knuepfer et al., 2001).

For cultured parasites, following agglutination with 100 mg ml-1

peanut lectin, non-agglutinated cells were fixed in 4% paraform-
aldehyde and permeabilized in 0.2% Triton X-100 prior to prepa-
ration of slides as previously described (Denny et al., 2002).
Primary antibodies (undiluted 3F12 ascites; anti-HASPB at 1:200
in 1% BSA in PBS) were detected using Alexa Fluor 488- (goat
anti-rabbit) or 594- (goat anti-mouse) conjugated secondary anti-
bodies (Invitrogen). Samples were visualized by confocal micros-
copy using a Zeiss LSM 510 meta with a Plan-Apochromat
63¥/1.4 Oil differential interference contrast objective lens and
images acquired using LSM 510 version 3.2 software (Carl Zeiss,
Jena, Germany).

Gut smears taken from infected sand flies were air-dried on
glass slides and fixed with methanol. Non-specific binding was
blocked with 1% BSA in PBS (Phosphate Buffered Saline, pH
7.4) for 20 min and the slides then washed and incubated for
30 min with antibodies. 3F12 ascites was used undiluted while
anti-HASPB and anti-SHERP antibodies were diluted 1:200 in
1% BSA in PBS. After washing, slides were incubated for 1 h with
goat anti-mouse polyvalent FITC-conjugated IgG (Sigma) in dilu-
tion 1:250 in 1% BSA in PBS (3F12 antibody assay) or with goat
anti-rabbit FITC-conjugated IgG (Sigma) in dilution 1:160 in 1%
BSA in PBS (anti-HASPB and anti-SHERP antibodies assays).
Slides were then re-washed and after mounting in Vectashield
with propidium iodide (Vecta Laboratories) examined under oil-
immersion objective in Olympus BX51 fluorescent microscope.
For each combination of Leishmania line, antibody and time
PBM, 100 promastigotes were photographed with an Olympus
camera, the images measured with Image J software and clas-
sified. These 100 parasites came from at least two different gut
smears taken from different sand flies.

Statistical analysis

Measurements of parasites and the representation of morphologi-
cal forms were compared using analysis of variance (post hoc test)
and chi-square test respectively. Results of qPCR were tested with
non-parametric Mann–Whitney U-test and Kruskal–Wallis test
(ANOVA). All the statistical evaluations were performed with statis-
tical software SPSS version16 and Statistica version 6.0.
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