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ABSTRACT In this work, we analyzed viral prevalence in trypanosomatid parasites
(Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses
from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses).
Most of the flagellate isolates bore two or three viral types (mixed infections). Al-
though no new viral groups were documented in Blechomonas spp., our findings are
important for the comprehension of viral evolution. The discovery of bunyaviruses in
blechomonads was anticipated, since these viruses have envelopes facilitating their
interspecific transmission and have already been found in various trypanosomatids
and metatranscriptomes with trypanosomatid signatures. In this work, we also pro-
vided evidence that even representatives of the family Narnaviridae are capable of
host switching and evidently have accomplished switches multiple times in the
course of their evolution. The most unexpected finding was the presence of leish-
maniaviruses, a group previously solely confined to the human pathogens Leishma-
nia spp. From phylogenetic inferences and analyses of the life cycles of Leishmania
and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most
likely infected Leishmania first and was acquired by Blechomonas by horizontal trans-
fer. Our findings demonstrate that evolution of leishmaniaviruses is more complex
than previously thought and includes occasional host switching.

IMPORTANCE Flagellates belonging to the genus Leishmania are important human
parasites. Some strains of different Leishmania species harbor viruses (leishmaniavi-
ruses), which facilitate metastatic spread of the parasites, thus aggravating the dis-
ease. Up until now, these viruses were known to be hosted only by Leishmania.
Here, we analyzed viral distribution in Blechomonas, a related group of flagellates
parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings
shed light on the entangled evolution of these viruses. In addition, we documented
that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral
groups known from other insects’ flagellates.
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Trypanosomatidae are a diverse family of flagellates primarily parasitizing insects (1).
The vast majority of known trypanosomatids are monoxenous, i.e., restricted to a

single (mainly insect) host. However, at least three lineages independently acquired the
ability to infect other hosts, such as plants (Phytomonas spp.) and vertebrates (Trypano-
soma spp. and a group that unites Leishmania, Paraleishmania, and Endotrypanum),
using insects as vectors (2–5). Because of their medical or economic importance,
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dixenous species were studied in minute detail, while their monoxenous relatives
remained mostly neglected (1, 6). One of such usually disregarded groups— genus
Blechomonas (subfamily Blechomonadinae)— comprises flagellate parasites of fleas (7).
In many phylogenetic reconstructions, this clade is a sister to all other trypanosomatids
excluding Trypanosomatinae (Trypanosoma spp.) and Paratrypanosomatinae (Para-
trypanosoma spp.) (8–11). Such a position implies an early origin of this group.
Nevertheless, since the genus description in 2013, very little attention has been paid to
its members, although the genome of the type species, Blechomonas ayalai, has been
sequenced and included in some recent phylogenomic analyses (12, 13).

The importance of dixenous parasites determined their priority in the studies of
viruses of trypanosomatids (14, 15). The first-ever characterized virus in these flagellates
was Leishmania RNA virus 1 (LRV1) (16). This is a double-stranded RNA (dsRNA) virus of
the family Totiviridae found in the New World Leishmania guyanensis (17). LRV1 im-
pedes the immune response against Leishmania and facilitates metastatic spread of the
parasites (18, 19). A related Leishmania RNA virus 2 (LRV2) was shown to infect
Leishmania major, Leishmania aethiopica, and Leishmania infantum in the Old World (20,
21). It was proposed that Leishmania spp. and LRV1/2 have coevolved for a long time
(20, 22).

A recent large-scale survey of RNA viruses in trypanosomatids revealed the presence
of four other viral groups, confirming some previous unsystematic reports (23–25).
These groups are the tombus-like viruses {positive single-stranded RNA [(�)ssRNA]
genome, proposed taxon}, leishbunyaviruses (LBVs) [(�)ssRNA genome, proposed
taxon], narnaviruses (NVs) [(�)ssRNA or dsRNA genomes, formally recognized family],
and an unusual ostravirus (26). Interestingly, no relatives of leishmaniaviruses have
been found in the analyzed flagellates, leading to a speculation that LRV1/2 were
acquired by an ancestor of modern Leishmania and subsequently lost in most extant
species. This conclusion was mainly based on the analysis of viral presence in the
monoxenous species of the genera Crithidia and Leptomonas, close phylogenetic
relatives of the dixenous Leishmania, Paraleishmania, and Endotrypanum (27). However,
many groups of Trypanosomatidae were not included in the screening, rendering this
interpretation preliminary.

In this work, we investigated the diversity of viruses in flea-infecting trypanosoma-
tids of the genus Blechomonas and report the presence of three different types of
viruses in these flagellates, including those related to the prototypical leishmaniavi-
ruses of the family Totiviridae.

RESULTS AND DISCUSSION
Screening and sequencing. Twelve isolates of Blechomonas spp. used in this

analysis were described in considerable detail previously (7). The additional strain of
Blechomonas luni (B09-1006) available in our collection was isolated from the flea
Chaetopsylla globiceps, collected on the red fox Vulpes vulpes in the Czech Republic in
2009 (see Table S1 in the supplemental material). In five isolates (Blechomonas luni
B09-1006, B. ayalai B08-376, Blechomonas juanalfonzi B07-161, Blechomonas maslovi
B05-J13, and Blechomonas wendygibsoni B09-1267), we documented the presence of
the dsRNA bands (Fig. 1). These samples were sequenced using the Illumina HiSeq
platform, each yielding 2.4 Gbp of sequence data on average. Sequence analyses
revealed that these five isolates contain, in total, nine new viruses from three distinct
viral groups (Table 1). Importantly, these groups comprise viruses with (�)ssRNA,
(�)ssRNA, and dsRNA genomes, allowing sensitive detection of either their genomes or
respective replicative intermediates (in the case of ssRNA). Viral genomic RNA se-
quences were mostly complete, except for the M segments of B. luni LBV1 (BlunLBV1)
and B. maslovi LBV1 (BmasLBV1), and the narnavirus BmasNV1, which were incomplete
at their 3= ends. Here, viruses are named according to the established convention
indicating an abbreviated host name and viral affiliation (LBV, LRV, or NV for leishbu-
nyaviruses, leishmaniaviruses, and narnaviruses, respectively). Coinfections with more
than one virus were documented for three out of five analyzed isolates (Table 1).
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No association between occurrence of the viruses and the species of flagellates or
their primary/secondary hosts was apparent from the data (Table 1; Fig. 2). Moreover,
the very closely related isolates B. luni B09-1006 and B08-658 turned out to be virus
positive and virus negative, respectively. As noted previously, caution should be
exercised when interpreting results of viral presence or absence (26). If the viral load is
(very) low, a sample that is in fact a virus-positive sample may appear virus negative.

LBVs. Trypanosomatids are frequently infected with leishbunyaviruses (LBVs) be-
longing to the recently proposed family Leishbunyaviridae of the order Bunyavirales
(26). In this work, we identified three LBVs infecting different Blechomonas spp.—B. luni
B09-1006, B. ayalai B08-376, and B. maslovi B05-J13 (Table 1; Fig. 1). All these viruses
shared a characteristic tripartite genome arrangement. Their RNA-dependent RNA
polymerase (RDRP), nucleocapsid protein, and terminal panhandle sequences were
homologous to those of LBVs of Leishmaniinae. The lengths of the M segments, as well
as the amino acid sequences of the putative glycoproteins which they encode, were
variable. Analysis with transmembrane domain prediction software (TMHMM, TMPred,

FIG 1 RNA viruses of Blechomonas spp.: Blechomonas keelingi B100, B. luni B08-658, B. pulexsimulantis
ATCC 50186, B. lauriereadi B08-604, B. luni B09-1006, B. ayalai B08-376, B. juanalfonzi B07-161, B. danrayi
B08-780, B. campbelli B06-BK, B. wendygibsoni B09-1267, and B. maslovi B05-J13. M, GeneRuler 1-kb DNA
ladder. Indicated sizes are in kilobases. The shortest dsRNA fragment from B. maslovi B05-J13 (�470 bp)
returned no identifiable BLAST hits.

TABLE 1 Virus-positive Blechomonas spp.a

Host strain Host and viral RNA Length (nt) Accession no.

B. luni B09-1006 BlunLBV1 L segment 5,974 MG967334
BlunLBV1 M segment 1,059 MG967335
BlunLBV1 S segment 618 MG967336
BlunNV1 2,747 MG967337

B. ayalai B08-376 BayaLBV1 L segment 6,009 MG967338
BayaLBV1 M segment 822 MG967339
BayaLBV1 S segment 646 MG967340

B. juanalfonzi B07-161 BjuaLRV4 5,429 MG967341

B. maslovi B05-J13 BmasLBV1 L segment 6,251 MG967342
BmasLBV1 M segment 1,411 MG967343
BmasLBV1 S segment 706 MG967344
BmasLRV3 5,412 MG967345
BmasNV1 2,945 MG967346

B. wendygibsoni B09-1267 BwenLRV3 5,403 MG967347
BwenNV1 2,748 MG967348

aSpecies, isolate names, and GenBank accession numbers of the identified viral sequences are indicated. LBV,
Leishbunyavirus; LRV, Leishmaniavirus; NV, Narnavirus.
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and Phobius) revealed the presence of at least two transmembrane helices in all
putative glycoproteins. Moreover, we have also predicted the N-terminal signal peptide
for membrane insertion and N-glycosylation sites using several approaches (SignalP,
Signal-BLAST, and Phobius) (Table S2). A similar arrangement of the Leishmaniinae LBV
putative glycoproteins had been reported earlier (26). The LBVs of Blechomonas (B.
ayalai LBV1 [BayaLBV1], BlunLBV1, and BmasLBV1) were firmly nested within the
proposed Leishbunyaviridae, although they did not form a single lineage, suggesting at
least two independent horizontal transfers, most likely from unrelated trypanosomatids
(Fig. 3). At the same time, BayaLBV1 and BlunLBV1 constitute sister taxa in the obtained
tree, and given that their hosts are more closely related to each other than to that of
BmasLBV1 (Fig. 2), we believe that it may be an example of virus-flagellate coevolution.
The modest number of analyzed isolates does not allow us to generalize this conclu-
sion.

Narnaviruses. Narnaviruses are capsidless viruses containing a single RDRP-
encoding transcript (28–30). Originally, they were found in the yeast Saccharomyces
cerevisiae but later were also detected in oomycetes (31) and trypanosomatids (23, 24,
26, 32).

We documented narnaviruses in three trypanosomatid isolates—B. luni B09-1006, B.
maslovi B05-J13, and B. wendygibsoni B09-1267 (Fig. 1; Table 1). Interestingly, in the first
two cases the corresponding dsRNA bands could not be detected using the DNase

FIG 2 Viruses of Trypanosomatidae. Maximum likelihood phylogenetic tree of trypanosomatids reconstructed using 18S
rRNA and gGAPDH genes (78 operational taxonomic units [OTUs]). Viral groups infecting these flagellates are indicated on
the right (see key at top). Numbers at nodes indicate bootstrap percentage/posterior probability. Filled circles mark
branches with maximal statistical supports. The scale bar indicates the number of substitutions per site.
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I-LiCl method (data not shown), whereas an S1 nuclease-based approach allowed their
visualization on the gel (Fig. 1). All three viral RNAs were �3.0 kb long and contained
a single open reading frame (ORF) encoding RDRP as well as two to three stem-loop
structures on both the 5= and 3= ends (Fig. S1). In narnaviruses from yeasts, these
structures are essential for viral replication and defense against exonucleases of the
host (30). It is worth noting that the short terminal complementary sequences in
narnaviruses of Blechomonas spp. (5=-CCCG. . .CGGG-3=) differ from the homologous
regions in narnaviruses of S. cerevisiae (5=-GGGGGC. . .GCCCC-3= [33]).

On the phylogenetic tree (Fig. 4), Blechomonas NVs (BmasNV1, B. wendygibsoni NV1
[BwenNV1], and BlunNV1) grouped with members of the genus Narnavirus, enclosing
prototypical 20S and 23S RNA viruses of S. cerevisiae (34) and viruses found in

FIG 3 Maximum likelihood phylogenetic tree of proposed Leishbunyaviridae based on RDRP amino acid sequences. Numbers at the branches indicate Bayesian
posterior probability and maximum likelihood bootstrap supports, respectively; those having a Bayesian posterior probability value of 1.0 and maximum
likelihood bootstrap support of 100% are marked with black circles. The scale bar indicates the number of substitutions per site. The tree was rooted with the
sequences of Phenuiviridae. Abbreviations and GenBank accession numbers are provided in Table S3.
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environmental arthropod metatranscriptomes (35). The previously described represen-
tatives of Narnaviridae infecting trypanosomatids Leptomonas seymouri and Phytomo-
nas serpens were situated in a separate clade of the so-called Narna-like viruses (Fig. 4).
This fact along with the nonmonophyletic distribution of narnaviruses from Blechomo-
nas spp. suggests that trypanosomatids have acquired these viruses at least three times
independently. In addition, a comparison of the phylogenies of trypanosomatids (Fig. 2)
and their viruses (Fig. 4) revealed a discrepancy: BlunNV1 forms a sister clade to
BwenNV1 and BmasNV1 is not closely related to them, whereas B. luni is more closely
related to B. maslovi than to B. wendygibsoni. The most parsimonious explanation of this

FIG 4 Maximum likelihood phylogenetic tree of Narnaviridae based on RDRP amino acid sequences. Numbers at the branches indicate Bayesian
posterior probability and maximum likelihood bootstrap supports, respectively; those having a Bayesian posterior probability value of 1.0 and
maximum likelihood bootstrap support of 100% are marked with black circles. The scale bar indicates the number of substitutions per site. The
tree was rooted with the sequences of Leviviridae. Abbreviations and GenBank accession numbers are provided in Table S3.
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implies a horizontal transfer of viruses between two unrelated flagellate species. Insect
hosts are quite often infected by two or more trypanosomatid species (36–38), poten-
tially facilitating such horizontal transfer.

Leishmaniaviruses: first representatives outside Leishmania. Three out of 13

analyzed isolates (Blechomonas juanalfonzi, B. maslovi, and B. wendygibsoni) were
documented to bear viruses of the genus Leishmaniavirus (LRV) of the family Totiviridae.
Their single-RNA genomes contain two overlapping ORFs (�1 ribosomal frameshift)
coding for the capsid protein and RDRP (Fig. S2A). The same genomic organization is
inherent to leishmanial LRV1s but not LRV2s. The RDRP sequence of the latter virus is
either in-frame or in �1 frame relative to the capsid protein (20, 21, 39). A stem-loop
structure and a slippery sequence are two structural elements governing the ribosomal
frameshift, which were also identified in Blechomonas LRVs (Fig. S2A). As in other
members of the Totiviridae, 3= termini of Blechomonas LRVs were predicted to form
stem-loop structures (Fig. S2B). Although not conserved on the sequence level, these cis
elements had been implicated in replication and RNA packing of the yeast L-A virus (40)
and Leishmania guyanensis LRV1 (41).

Phylogenetic analyses using a concatenated capsid-RDRP data set demonstrated a
strongly supported monophyly of leishmaniaviruses from Leishmania and Blechomonas
(Fig. 4) and some intermingling of the two groups (Fig. 5), suggesting a horizontal
transfer of viruses between the two distantly related trypanosomatid genera. Given that
the new viruses are quite distinct from the previously characterized LRV1 and LRV2, we
named the leishmaniaviruses from B. wendygibsoni and B. maslovi LRV3s and the virus
from B. juanalfonzi LRV4. B. juanalfonzi LRV4 (BjuaLRV4) represents the deepest branch
in the LRV clade, whereas BmasLRV3 and BwenLRV3 are sisters to the LRV1s from the
New World Leishmania spp. (Fig. 5 and 6). Similarly to the situation with narnaviruses,
there was a significant discrepancy between the phylogenies of the LRVs from
Blechomonas and their flagellate hosts. BwenLRV3 and BmasLRV3 formed a clade,
whereas BjuaLRV4 was distant from them. The host of BwenLRV3 was not closely related
to those of the two other viruses (Fig. 6). This finding marks the first occurrence of
viruses from the genus Leishmaniavirus and the family Totiviridae in trypanosomatids
other than representatives of the genus Leishmania.

Viral coinfections. To understand whether coinfecting viruses infect all or just

subsets of cells in a given population, we analyzed viral infection in isolated clonal cell
lines. As a model, B. maslovi B05-J13 was used to generate clones, because its primary
culture was simultaneously infected with three different viruses, namely, LBV, LRV, and
NV (Table 1). Our results demonstrate that all obtained clones invariably harbored all
three viruses (Fig. 7), confirming this triple infection on the level of single cells.

Conclusions. The recent survey of viral diversity in trypanosomatids, which are

composed of 52 isolates belonging to �20 species from three genera, documented 13
species of RNA viruses and demonstrated that besides the well-studied LRVs, at least
four other groups of viruses occur in these flagellates (26). Here, with a relatively
modest sampling (13 isolates of 11 species, belonging to a single genus) we were able
to discover a comparable number of viruses: nine species from three different groups
(leishbunyaviruses, narnaviruses, and leishmaniaviruses). The high number of the new
discovered viruses is explained by mixed viral infections in some isolates of Blechomo-
nas spp., representing novel “hotbeds” of viral discovery, as was Leptomonas pyrrhocoris
in our previous study. Whether the presence of viruses in Blechomonas is harmful or
beneficial to their hosts, e.g., in the interplay with their insect vectors, remains to be
investigated further.

Although no new viral groups were documented in Blechomonas spp., our findings
are important for the comprehension of viral evolution. The discovery of LBVs in
blechomonads was anticipated, since these viruses have envelopes facilitating their
interspecific transmission and have already been found in various trypanosomatids and
metatranscriptomes with trypanosomatid signatures (26). As in the previous study, in
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the case of BayaLBV1 and BlunLBV1, we documented potential lateral transfer of viruses
and short-term virus-trypanosomatid coevolution.

The new findings concerning narnaviruses demonstrated that their ability for host
switching was significantly underestimated (42). Previously, it was considered that

FIG 5 Maximum likelihood phylogenetic tree of Leishmaniavirus based on concatenated capsid-RDRP amino acid
sequences. Numbers at the branches indicate Bayesian posterior probability and maximum likelihood bootstrap
supports, respectively; those having a Bayesian posterior probability value of 1.0 and maximum likelihood bootstrap
support of 100% are marked with black circles. The scale bar indicates the number of substitutions per site. The tree was
rooted with the sequences of Trichomonasvirus. Abbreviations and GenBank accession numbers are provided in Table S3.

FIG 6 Comparison of the phylogenies of leishmaniaviruses and their respective hosts. The scheme is
based on the phylogenetic trees presented in Fig. 2 and 5 with simplifications: (i) no branch lengths are
shown on either tree and (ii) only LRVs and LRV-containing trypanosomatids were included.
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owing to the simple organization of these viruses (single RNA coding only for RDRP),
they could be transmitted only vertically or during mating (29). Therefore, we have
proposed that Leptomonas seymouri and Phytomonas serpens inherited narnaviruses
from a common ancestor, while many other trypanosomatids lost them (26). However,
all narnaviruses found in Blechomonas spp. were unrelated to those documented in
other trypanosomatids and did not form a monophyletic clade by themselves. In
addition, a horizontal transfer of viruses is a parsimonious explanation for the sister
relationships of the distantly related BlunNV1 and BwenNV1. Thus, we provided evi-
dence that even “naked” viruses are capable of host switching and evidently have
accomplished switches multiple times in the course of their evolution. The endocytosis
via flagellar pocket of trypanosomatids (43–45) is a plausible route of the acquisition of
narnaviruses.

Although none of the three viral groups documented in the Blechomonas hosts is
new, the presence of LRVs was unexpected, since until now, they were confined solely
to the human pathogens Leishmania spp. (26). The discovery of LRVs in monoxenous
trypanosomatids unrelated to Leishmania sheds new light on the origin and evolution
of these viruses. As suggested by the phylogenetic analyses, members of the genus
Leishmaniavirus apparently originated from the fungal viruses, which represent a
regular component of the intestinal microbiome of insects (46, 47). It is tempting to
propose an early divergence of BjuaLRV4 as evidence of blechomonads being the first
hosts of LRVs, yet deducing a common ancestor of this genus from the phylogenetic
tree remains problematic. Indeed, a simple parsimony analysis shows that regardless of
whether a given Leishmania or Blechomonas species is selected as an ancestral host, the
number of intergeneric transitions remains the same, namely, two. In order to recon-
struct the evolution of leishmaniaviruses and, in particular, pinpoint their possible
transitions between the Leishmania and Blechomonas hosts, it is important to consider
the life cycles of these flagellates and their insect hosts and propose plausible scenarios,
in which parasites could meet and exchange their viruses. For Leishmania spp., this is
well studied: during blood-feeding of a sandfly on an infected vertebrate host, the
parasites enter the gut, where they propagate and then migrate to the anterior part
and are transmitted to another vertebrate during the next blood meal (48, 49).

FIG 7 LBV, NV, and LRV presence in clonal lines of Blechomonas maslovi B05-J13. RT-PCR analysis with
virus-specific primers. M, GeneRuler 1-kb DNA ladder. Clonal lines are numbered from 1 to 5. Triangles
denote specific PCR products. �, negative PCR control; �, primary culture of B. maslovi B05-J13 used as
a positive control.
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However, the life cycles of monoxenous trypanosomatids are largely unknown, but in
general, the described routes of transmission include feeding on a contaminated
substrate, direct coprophagy, necrophagy, and vertical transmission through eggs’
surfaces (1, 45, 50, 51).

While the life cycles of Blechomonas spp. were never studied, it has been proposed
that the infection of fleas occurs at the larval stage and persists into the imago stage
(7). Indeed, adult fleas are strictly hematophagous and therefore cannot acquire any
pathogen by regular means (52). The flea larvae are scavengers consuming dead insect
bodies, conspecific eggs, detritus from host nests, feces of adult fleas, etc., and thus
may acquire flagellates by coprophagy and necrophagy. In addition, there should be a
transphasic transmission of the protists into adults, i.e., their preservation during
metamorphosis (7). Taking into account all these factors, one can only speculate about
where Leishmania and Blechomonas meet. This cannot be the sandfly’s gut, since there
is no way for a Blechomonas to enter it. It is also unlikely to occur in the blood of a
vertebrate, since blechomonads along with their viruses would be quickly eliminated
by the immune system before sharing their viruses with Leishmania residing in the
highly specific compartment of phagolysosomes of macrophages. In our opinion, the
flea gut is the most likely place for such an exchange. Indeed, trypanosomatids can
survive in a nonspecific insect host for a considerable period (32, 53), and even
Leishmania parasites were detected in adult fleas (54). Both Leishmania and Blechomo-
nas may have enough time for contacts, and they are separated by no barriers in both
imagos and larvae. Under these circumstances, leishmanias are doomed and can serve
only as donors of viruses. The adult fleas may obtain Leishmania from the blood of an
infected vertebrate, while their larvae may become infected after consuming feces of
the adults, which are full of partially digested blood (55, 56), or from dead bodies of
infected adult sandfly females dying at their breeding grounds, e.g., rodent nests, which
are common for both sandfly and flea larvae. According to the presented scenarios,
only transmissions of viruses from Leishmania to Blechomonas, but not vice versa, may
occur. It was previously proposed that Leishmania spp. coevolved with LRVs for a long
time (22). Our findings demonstrate that the evolution of LRVs is much more complex
and includes host switching. A recent discovery of an LRV2 in Leishmania infantum (57)
suggests that horizontal transfers might occur also between different Leishmania
species.

MATERIALS AND METHODS
Parasite culture, DNA and RNA isolation, and molecular marker analysis. The cultures of

Blechomonas ayalai, B. campbelli, B. danrayi, B. englundi, B. juanalfonzi, B. keelingi, B. lauriereadi, B. luni, B.
maslovi, B. pulexsimulantis, and B. wendygibsoni (a total of 13 isolates [see Table S1 in the supplemental
material]) were initially grown on biphasic blood agar overlaid with RPMI 1640 medium (Thermo Fisher
Scientific, Waltham, USA) for 1 to 3 weeks. For DNA and RNA isolation, Blechomonas spp. were subpas-
saged in brain heart infusion (BHI) medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10 �g/ml of hemin (Jena Bioscience GmbH, Jena, Germany), 10% fetal bovine serum (FBS), 500 units/ml
of penicillin, and 0.5 mg/ml of streptomycin (all from Thermo Fisher Scientific) as reported previously (9).
DNA was isolated from 5 � 107 cells using the Qiagen DNeasy Blood & Tissue kit (Qiagen, Hilden,
Germany) and amplified with primers M200 and M201 (for glycosomal glyceraldehyde-3-phosphate
dehydrogenase [gGAPDH]) or S762 and S763 (for 18S rRNA), as described previously (58, 59). PCR
products were gel purified and sequenced at Macrogen Europe (Amsterdam, The Netherlands). Total RNA
was isolated from 0.4 � 109 to 1 � 109 cells as described previously (26).

dsRNA isolation and next-generation sequencing. The dsRNA fraction was isolated from 200 �g
of total RNA using the DNase-S1 nuclease or DNase I-LiCl method (26) and visualized on an 0.8% agarose
gel. RiboMinus libraries were sequenced using Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) at
Macrogen Inc. (Seoul, South Korea).

Viral genome assembly. Reads were quality checked with FastQC v0.11.5 (60), trimmed with
Trimmomatic v0.36 (61), and assembled de novo with Trinity v2.4.0 (62). Reads were mapped back to the
contigs using Bowtie 2 v2.2.9 (63), sorted with SAMtools v1.3 (64), and viewed in Artemis genome
browser v1.8 (65). The “per-base” coverage was calculated using BEDTools program v2.25 (66). Contigs
containing viral RNA-dependent RNA polymerase (RDRP) and leishbunyavirus nucleocapsid protein
genes were recovered by TBLASTN searches (67). The M segments of leishbunyaviruses were found by
visual inspection of read coverage of obtained contigs. The borders of viral sequences within the contigs
were delineated by the presence of conserved sequence elements (complementary terminal sequences
and/or secondary structures), and in the case of their absence, a cutoff of 10 reads per base was applied.
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Computational analyses. (i) Trypanosomatids. The trypanosomatid phylogeny was reconstructed
using a concatenated 18S rRNA plus gGAPDH gene data set. The core alignments of both genes were
taken from a previous study (68), and the groups of interest (Leishmania and Blechomonas) were
expanded. The 18S rRNA gene alignment was purged of poorly aligned positions with Gblocks 0.91b as
described previously (69). Maximum likelihood analysis of the concatenated alignment was performed in
IQ-TREE v. 1.5.5 (70) with a partitioning scheme considering genes and codon positions in the gGAPDH
gene. The built-in ModelFinder (71) selected the following partitioned model: TPM2u � I � G4, GTR �
I � G4, and K3Pu � I � G4 for the first, second, and third codon positions of the gGAPDH gene,
respectively, and TNe � I � G4 for the 18S rRNA gene. The branch support was assessed with the use
of standard bootstrap method (1,000 replicates). Bayesian inference was accomplished in MrBayes 3.2.6
(72) as described elsewhere (73) with a slight modification of the partition model: GTR � I � G, GTR �
G, and GTR � I � G for the three respective codon positions of the gGAPDH gene and GTR � I � G for
the 18S rRNA gene.

(ii) Viruses. Phylogenetic reconstructions were carried out using the RDRP protein alignments for
Bunyavirales and Narnaviridae and concatenated capsid-plus-RDRP protein alignments for Totiviridae.
Amino acid sequences were aligned with MAFFT (v. 7.243) using the “E-ins-I” iterative refinement method
(74) and trimmed with TrimAl (v. 1.3) with “automated1” settings (75). The scheme of phylogeny
reconstruction and the software used were the same as in the case of trypanosomatids (see above). The
best-fit models selected by ModelFinder were rtREV � F � I � G4 for Narnaviridae, LG � F � I � G4 for
Bunyavirales, and LG � F � G4 and LG � F � I � G4 for capsid and RDRP of Totiviridae, respectively.
Bayesian inferences for Narnaviridae and Bunyavirales were performed using mixed amino acid model
prior, which resulted in the 1.0 posterior probability for the Blosum model. Heterogeneity over sites in
both cases was estimated under the I � G model. For the Totiviridae data set, a partitioned model (LG �
I � G, LG � I � G) with unlinked parameters and branch lengths was used. Abbreviations and GenBank
accession numbers for viruses used in phylogenetic inferences are listed in Table S3.

Predictions of the transmembrane domains, membrane-targeting signal peptides, and N-glyco-
sylation sites were made in TMHMM (v. 2.0) (76), TMPred (77), Phobius (78), SignalP (v. 4.1) (79), and
Signal-BLAST (80).

Cloning of B. maslovi, cDNA synthesis, and screening for viruses by reverse transcription-PCR
(RT-PCR). A primary culture of B. maslovi B05-J13 (simultaneously coinfected by three different viruses)
was cloned by limiting dilution as described previously (10). Total RNA (from 4 � 108 cells) was purified
using TRIzol (Thermo Fisher Scientific) method (81). RNA was treated with DNase I prior to cDNA
synthesis using the Super Script IV first-strand synthesis system (Thermo Fisher Scientific) with random
hexamers according to the manufacturer’s protocol.

Viral presence was detected by RT-PCR with the following specific primers: for BmasLBV1, BmasLBV-F
5=-CTAGACTGAGCCCTGATTTC-3= and BmasLBV-R 5=-ATAACTCGGAATGGTTCTCG-3= (expected product
size 897 bp); for BmasNV1, BmasNV-F 5=-AGTGATCCATTCCGATGATC-3= and BmasNV-R 5=-AGTCCAAAGT
ACGAAAGGTC-3= (expected product size 961 bp); for BmasLRV3, BmasLRV3-F 5=-GCAATTAAGTTCCGACA
TGG-3= and BmasLRV3-R 5=-CCAGTTTTTGACTTGGTGTC-3= (expected product size 980 bp).
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