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ARTICLE INFO ABSTRACT
Keywords: Tick-borne zoonoses pose a major challenge to human and animal health, driving efforts to monitor the distri-
Urban wildlife bution, intensity, and diversity of their causative agents. Within the One Health framework, which links human,

Vector-borne pathogens surveillance animal, and environmental health, integrated surveillance strategies are increasingly needed. However, most
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studies focus on tick vectors, while vertebrate reservoirs are often overlooked due to labour-intensive sampling,
the need for specialized skills, and legislative or species protection constraints.

This study evaluated whether carcasses of accidentally killed wildlife (primarily roadkill) can serve as a source
of biological material for vector-borne pathogen surveillance, with a focus on urban habitats due to their public

health relevance. Hedgehogs, squirrels, and blackbirds were selected as synanthropic species that thrive in cities,
are commonly infested by ticks, and act as hosts for zoonotic tick-borne pathogens (TBPs).

A total of 268 carcasses (125 hedgehogs, 55 squirrels, and 88 blackbirds) were collected across multiple Czech
cities with public assistance. Overall, 1836 tissue samples were analyzed using multiplex real-time PCR assays
targeting over ten microorganisms. Detection efficiency was compared across tissues, with ear and skin
consistently the most reliable and versatile sample types. Individual pathogen-host-tissue combinations reached
65-93% efficiency, highlighting the value of multi-tissue sampling. The most prevalent TBPs detected were
Anaplasma phagocytophilum, Borrelia burgdorferi s.1., Bartonella spp., and Rickettsia helvetica.

In conclusion, carcasses of accidentally killed urban wildlife provide a practical and valuable resource for TBP
surveillance, complementing vector-focused methods. This approach supports One Health principles by inte-
grating wildlife monitoring into urban disease surveillance efforts.
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1. Introduction

Ticks are recognized vectors of numerous pathogens affecting both
humans and animals. Tick-borne diseases, including Lyme borreliosis,
tick-borne encephalitis (TBE), babesiosis, and anaplasmosis, are among
the most significant vector-borne diseases in the temperate climate zone.
Historically, the circulation of tick-borne pathogens (TBPs) was thought
to be restricted mainly to natural habitats such as deciduous and mixed
forests. In recent decades, reports of medically important tick species
and their associated pathogens in urban and peri-urban environments
across Europe and beyond have multiplied — a trend that likely reflects
both a real ecological expansion and a marked increase in scientific
interest and surveillance efforts, as evidenced by the steep rise in pub-
lished studies on ticks in urban green spaces over the last two decades
[1,2]. The circulation of TBPs within city landscapes elevates the risk of
human exposure. Urban habitats, characterized by increased fragmen-
tation, reduced biodiversity, and altered host availability which may
lead to a higher rate of parasite overdispersion, can significantly influ-
ence TBPs dynamics, possibly resulting in even higher pathogen prev-
alence rates compared to natural habitats [1,3,4].

Numerous studies have documented the presence of key tick vectors,
such as Ixodes ricinus and Dermacentor reticulatus, and the pathogens they
transmit in urban environments [3-8]. Despite this, the role of verte-
brate hosts, essential for tick feeding and as potential pathogen reser-
voirs, has received comparatively less attention [9-13], probably due to
challenges associated with their sampling—such as labour-intensive
procedures, the need for specialized skills, and animal welfare or spe-
cies protection constraints. To address this gap, our study focuses on four
synanthropic species commonly found in urban environments and
frequently parasitized by ticks: the European hedgehog (Erinaceus
europaeus), the Northern white-breasted hedgehog (E. roumanicus), the
Eurasian red squirrel (Sciurus vulgaris), and the Common blackbird
(Turdus merula). These species, representing insectivores, rodents, and
passerine birds, have been identified as competent or probable reser-
voirs for multiple TBPs [9,14-22].

Our methodology relies on the analysis of cadavers, collected pre-
dominantly in urban areas. This approach allows for direct detection of
TBPs within host tissues, independent of tick presence, providing a more
accurate assessment of pathogen circulation in urban ecosystems [11].
Although this study primarily targets TBPs, a comprehensive molecular
screening was applied that also encompassed major human pathogens
traditionally associated with other arthropod vectors in the region
(including Bartonella spp., Francisella tularensis, and flaviviruses), as
ticks are confirmed or putative contributors to their transmission cycles
and flaviviruses were screened in a vector-independent manner. From a
One Health perspective, the zoonotic relevance of selected pathogens
included in the screening—representing those of highest medical rele-
vance in the Czech Republic—is summarized in Supplementary Table 1.
Some data presented in this article—particularly concerning the pres-
ence of Borrelia spp., Anaplasma phagocytophilum, Bartonella spp., flavi-
viruses, and Hepatozoon spp.—have been previously partially published
in separate papers focusing on taxonomic classification of the pathogens,
tissue tropism, or genetic diversity in individual host species [23-27]. In
contrast, this study offers a broader synthesis, combining all available
data to assess co-infections, host age, sex, carcass condition, and habitat
type of cadaver origin. This integrative approach enables a more
comprehensive view of vector-borne zoonotic pathogen dynamics in
urban wildlife and highlights the value of cadaver-based surveillance.

2. Methods
2.1. Cadaver collection
Cadavers of the target species were primarily collected in urban areas

of three major Czech cities: Prague (50.0875° N, 14.4214° E), Brno
(49.1925° N, 16.6083° E) and Ceské Budé&jovice (48.9747° N, 14.4747°
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E) [coordinates in WGS84, decimal degrees]. A citizen-science approach
was employed, whereby members of the public either collected cadavers
or reported their locations. Additionally, wildlife rehabilitation centres
were contacted and asked to retain relevant cadavers.

Because the degree of decomposition can potentially affect the
detectability of pathogen DNA, each cadaver was assigned a decompo-
sition score (autolysis grade) to evaluate the diagnostic efficiency across
different decomposition levels. The grading system used in this study is
an author-defined classification, inspired by the “degree of degradation”
scale described by Szekeres et al. [11]., and adapted to field sampling
conditions with an emphasis on early post-mortem changes.

Cadavers were classified into the following categories:

Grade 1 A (freshly dead): Death occurred approximately 1-3 h
prior collection in the cold weather period. The carcass is intact, with
no odor; fur is firmly attached; the skin is intact with no (or minimal)
sloughing, and there is no bloating.

Grade 1 B (less fresh): Death occurred approximately 1-3 h earlier
in warm weather or more than 3 h prior collection in cold weather.
The carcass is slightly odorous; fur is firmly attached, the skin is
intact with no (or minimal) sloughing, early bloating may be present.
Grade 2 (moderately decomposed): Death occurred approximately
4-6 h earlier in warm weather or more than 3-12 h in cold weather.
Moderate gas buildup; skin and fur may begin sloughing; odor is
clearly noticeable.

Grade 3 (advanced decomposition): The carcass is bloated or
beyond the bloated stage, soft, with extensive tissue sloughing and a
strong odor.

e Grade 4 (mummified): The carcass is flattened and dry, often
lacking limbs or internal organs, with minimal odor due to advanced
desiccation.

Each cadaver was documented immediately after collection using a
standardized collection card, recording the date and time of collection,
GPS coordinates, presumed cause of death, autolysis grade, and the
finder contact information. Specimens were stored at —20 °C until
necropsy.

Based on the GPS coordinates and high-resolution satellite imagery
[28], localities were classified into three distinct habitat types:

e Urban: Built-up zones (industrial, commercial, public, military, and
private units; continuous urban fabric; discontinuous dense urban
fabric; discontinuous medium-, low-, or very-low-density urban
fabric; green urban areas; sports and leisure facilities).

e Periurban: Areas adjacent to urban zones and bordering a rural
zone; areas with complex and mixed cultivation patterns.

e Rural: Forests, arable land, and other non-urban landscapes.

2.2. Cadaver dissection

Cadavers were thawed for 4-8 h (depending on body size and
ambient temperature: 8-20 °C) prior to dissection. Dissections followed
a previously described protocol [24]. In brief: animals were morpho-
logically identified to species [29-31], sex and age class (juvenile:
presence of primary dentice in mammals or juvenile feathers in birds;
subadult: sexually immature individuals; and adults), weight and foot
length was recorded. For mammals, the following tissues were sampled
under sterile conditions: ear, muscle, lungs, blood, liver, spleen, kidneys,
urinary bladder, and brain. For blackbird only skin (from the head),
muscle, liver, and brain were collected.

Blood coagulum or liquid blood was obtained from the heart or
thoracic cavity using a sterile Pasteur pipette. To improve DNA and RNA
(for flavivirus detection) preservation, 1 ml of RLT buffer (Qiagen,
Hilden, Germany) was added to each sample, which was then stored at
—70 °C [32].

Species identity of hedgehogs was further confirmed using a
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molecular method based on a mitochondrial control region [33,34].
2.3. Tissue processing

Tissues were processed as previously described [23,24]. Samples
were homogenized (30% w/v) in RLT buffer (Qiagen, Hilden, Germany)
with B-mercaptoethanol, using stainless steel beads in a TissueLyzer II
(Qiagen, Hilden, Germany), followed by digestion with proteinase K.
After centrifugation, RNA and DNA were extracted from the superna-
tants using the QIAamp Viral RNA Mini Kit and DNeasy Blood & Tissue
Kit (Qiagen, Hilden, Germany) respectively, according to the manufac-
turer's instructions. All tissues were used for DNA extraction, while only
lung, liver, spleen, kidney, and brain samples were used for RNA
extraction. Blood for DNA extraction was resuspended in 220 pl of
phosphate-buffered saline (PBS); while for RNA extraction [23], it was
directly mixed with AVL buffer (Qiagen, Hilden, Germany).

2.4. Detection of target microorganisms

All samples were screened for several tick-borne microorganisms
using five multiplex real-time PCR (RT-PCR) assays targeting: Ana-
plasma phagocytophilum, Bartonella spp., Neoehrlichia mikurensis, Borrelia
burgdorferi s.l., B. miyamotoi, Spiroplasma spp., Babesia microti-like,
Rickettsia helvetica, and Francisella spp.

RT-PCR reactions were performed using iQ Multiplex Powermix with
iTaq polymerase (Bio-Rad Laboratories, Hercules, CA, USA) and
appropriate primers and probes (see Supplementary Table 2) on a
LightCycler 480 (Roche, Basel, Switzerland). The RT-PCR program
included: initial activation at 95 °C (5 min), 60 cycles of denaturation
(95 °C, 5 5), annealing/extension (60 °C, 35 s), and cooling (37 °C, 20 s).
The analysis was performed using second derivative calculations for Cp
(crossing point) values. Colour compensation was applied to correct for
fluorescence overflow from the dyes used. Amplification curves were
visually evaluated in the LightCycler 480 software.

Lungs, liver, spleen, kidney, brain and blood were screened for the
presence of flavivirus RNA using a one-step reverse transcription PCR
approach, employing universal flavivirus-specific primers and following
a protocol described previously [23]. PCR products of expected size
were sequenced bidirectionally to confirm the positive detection and to
identify the flavivirus species.

Part of the data concerning pathogen genotyping by conventional
PCRs and subsequent sequence analyses, specifically B. burgdorferi s.1.,
Anaplasma phagocytophilum, Bartonella spp., and flaviviruses, were
published separately [23-26].

2.5. Detection of specific anti-tick-borne encephalitis virus antibodies in
live trapped hedgehogs

Altogether 41 hedgehogs were additionally live trapped in urban
environments (Prague, Brno, and Ceské Budé&jovice) and sampled for
blood by cardiac puncture. Sera were separated and used for the
detection of specific anti-tick-borne encephalitis virus antibodies using a
commercially available ELISA kit (Immunozym FSME (TBE) IgG All
Species, Progen) according to the manufacturer's instructions.

2.6. Statistical analyses

Prevalence rates of the target microorganisms were compared across
host age, autolysis grade, and habitat type using Fisher's exact test. For
analysis within species groups, we used the asymptotic, permutation
based generalized Cochran-Mantel-Haenszel test (CMH), and general
independence tests, as described in Agresti [35] and implemented in R
via the coin package [36]. The CMH statistic tests for conditional in-
dependence in three-way contingency tables in which the third dimen-
sion is used as a stratification factor. The general independence test uses
no stratification for dependence detection between factors. As all these
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tests rejected the null hypothesis with considerably low p-values, we
complemented the analysis with post-hoc Pearson's ¥ test of indepen-
dence (to reveal associations in partial tables), and McNemar's X2 test (to
check for marginal homogeneity in partial tables), using Yates's or
Edwards's continuity correction, respectively, and Holm-adjusted p-
values.

3. Results
3.1. Sample set composition and cadaver characteristics

Altogether, 268 cadavers of the four target species were collected: 42
individuals of Erinaceus roumanicus (ER), 83 E. europaeus (EE), 55 Sciurus
vulgaris (SV), and 88 Turdus merula (TM). Detailed information for all
sampled individuals is provided in Supplementary Table 3.

Both sexes were approximately equally represented across most
species, except for blackbirds, in which females slightly predominated
(63%, difference statistically not significant, Fisher's exact test). Juve-
nile individuals constituted roughly one-fifth of the total cadavers, with
the lowest proportion of non-adult individuals recorded among
blackbirds.

Most cadavers were well-preserved, classified as grade 1 A or 1 B;
specimens in advanced stages of autolysis (grade 3) were rare. In a
substantial number of cases, the cause of death was not apparent and
was therefore recorded as “unknown”. Where the cause could be esti-
mated, road or train collisions were the most common. A notable pro-
portion of blackbirds died from collisions with glass surfaces (Table 1).

3.2. Geographic origin of samples

As the main focus of the study was on urban environments, most
cadavers originated from major Czech settlements (namely Brno, Ceské
Budéjovice, and Prague; Supplementary Figure 1). However, several
specimens were collected from rural areas, and a substantial portion of
samples (not shown in Supplementary Figure 1) were acquired from
wildlife rehabilitation centres (WRCs) located in Brno, Jaroméf, Liberec,
Pilsen, Prague, and Vlasim.

Cadavers with uncertain collection locations (44/268; 16%) were
excluded from habitat-related analyses. The majority of specimens ob-
tained from wildlife rehabilitation centres (WRCs) also lacked precise
geographic information (i.e., GPS coordinates). Although WRC staff
reported that most animals admitted to their facilities originate from
nearby urban or periurban areas, we categorized these cadavers sepa-
rately to maintain analytical accuracy. In total, precise location data
were available for nearly half of the sampled individuals (125/268;
47%) (Table 2).

3.3. Seasonal patterns of cadaver collection

Regarding seasonal patterns, the majority of cadavers collected for
this study were found during spring (April-May) and late summer
(July-August) (Fig. 1). However, date-of-death information was un-
available for 73 individuals (27%), mostly because these cadavers have
been stored in WRCs for an unspecified period without proper initial
documentation (typically when animals died shortly after arrival and
prior to receiving any treatment).

3.4. Tissue sample availability

Dissection of all cadavers yielded a total of 1836 tissue samples: 324
from E. roumanicus, 652 from E. europaeus, 448 from S. vulgaris, and 412
from T. merula (see Supplementary Table 4).

Not all tissue types could be sampled from every individual due to
organ loss or advanced tissue degradation. Nonetheless, each of the
sampled tissue types was available from at least 83% of cadavers
(Table 3).
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Table 1
Proportion of cadavers across categorical variables (sex, age class, autolysis
grade, and probable cause of death), by species. ER = Northern white-breasted
hedgehog (Erinaceus roumanicus), EE = European hedgehog (E. europaeus), SV =
Eurasian red squirrel (Sciurus vulgaris), TM = Common blackbird (Turdus
merula).

Category ER EE SV ™ total
Sex
0,
female 45% 45% 40% 63% (51032’ y
(19/42)  (37/83)  (22/55)  (55/88) oo
%
male 55% 51% 56% 36% ?182;3’ y
(23/42)  (42/83)  (31/55) (32/88) o)
indeterminable 0% (0/ 5%(4/ 4%(©2/ 1%/ 3% 7/
42) 83) 55) 88) 268)
Age
0,
venile 21% 34% 20% 7% (6/ (2;) 4/;
J (9/42)  (28/83) (11/55) 88)
268)
0,
subadult 17% 19% 9% (5/ 9% (8/ (1;'6/;
(7/42)  (16/83)  55) 88) 268)
0/
adult 62% 47% 71% 84% ?1672 y
(26/42)  (39/83)  (39/55)  (74/88) 5o
Autolysis grade
()
A 36% 41% 73% 36% ?152/; ,
(15/42)  (34/83)  (40/55) (32/88) 0
0/
1B 40% 35% 13% 31% (2;9/;’
(16/42)  (29/83)  (7/55)  (27/88) 5o
0
) 21% 22% 13% 33% (2:3/;
(9/42)  (18/83) (7/55)  (29/88)
268)
5 5% (2/ 2% 2/  2%(1/ 0% 0/ 2% (5/
42) 83) 55) 88) 268)
Probable cause of death
38%
o 38% 31% 64% 27%
road/train killed (16/42)  (26/83) (35/55)  (24/88) ;16(;1)/
hit elass 0% (0/ 0%(0/ 0%(0/ 13% 4% (11/
g 42) 83) 55) (11/88)  268)

. 2% (1/ 5%/ 4% (©Q/ 7% 6/ 5% 13/
killed by a predator 42) 83) 55) 88) 268)
euthanised/died in 0% (0/ 11% 0% (0/ 0% (0/ 3% (9/

WRCs* 42) (9/83)  55) 88) 268)
Usutu virus infection 0% @/ 0% 0/ 0%(0/ 9% (8/ 3% 8/

42) 83) 55) 88) 268)
pa::::)lgii’t'e‘:l":vith 12% 1% 1/ 0% (0/ 0%/ 2% (6/
(5/42)  83) 55) 88) 268)

TBPs
exhaustion/died 0% 0/ 2%(2/ 0%/ 2% 2/ 1% 4/

during hibernation 42) 83) 55) 88) 268)
tra 0% (0/ 0%/ 0%/ 2% 2/ 1% 2/

P 42) 83) 55) 88) 268)
0,
unknown 48% 49% 33% 40% ?1312’ ,
(20/42)  (41/83)  (18/55)  (35/88) oo

* wildlife rehabilitation centres.

Table 2
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3.5. Pathogen screening and tissue-specific detection efficiency

All tissue samples obtained from cadavers were screened for the
presence of DNA from nine tick-associated microorganisms, most of
which are recognized or potential pathogens of humans and/or animals
(see Supplementary Table 4).

For each pathogen detected in at least 25 individuals of a given host
species, detection efficiency was assessed across different tissue types. It
was calculated as the percentage of positive detections in a given tissue
relative to all pathogen-positive individuals of that species for which the
tissue sample was available (Fig. 2). The ear tissue (or skin, in the case of
blackbirds) proved to be the most reliable for detecting the majority of
TBP-positive individuals. Overall, ear/skin samples showed a signifi-
cantly higher prevalence of TBPs compared to all other tissues (McNe-
mar's x2 test with Edwards's continuity correction and Holm adjusted p-
values; p < 0.001) (Fig. 2). Despite this, the highest tissue-specific
detection efficiency for individual pathogen-host combinations ranged
from 65% to 93%, indicating that the use of multiple tissue types
consistently enhanced the sensitivity of pathogen detection.

Across all host species, skin or ear tissue was the most effective
sample type for detecting B. burgdorferi s.1. and R. helvetica (McNemar's
tests, p < 0.001). In contrast, for A. phagocytophilum and Bartonella spp.,
no statistically significant differences in detection efficiency were
observed among ear/skin, lung, liver, spleen, and kidney tissues. Simi-
larly, muscle tissue was significantly more effective than other tissues
for B. burgdorferi detection, with the exception of the urinary bladder,
where no significant difference was observed (McNemar's test; p <
0.001).

Comparable patterns were also observed at the level of individual
host species (Fig. 2). In the case of A. phagocytophilum, the pathogen was
most consistently detected in lung tissue of mammalian hosts and in the
liver of blackbirds (lung was not sampled in T. merula). Borrelia burg-
dorferi s.1. and A. phagocytophilum were also frequently detected in uri-
nary bladder tissues of both the hedgehog species. Bartonella spp. were
most reliably detected in spleen samples of squirrels and European
hedgehogs, whereas in Northern white-breasted hedgehogs, ear tissue
was the most informative one (Fig. 2).

The remaining pathogens were not included in the tissue-specific
detection efficiency analysis due to insufficient numbers of positive
samples. However, additional pairwise comparisons were conducted
and did not reveal any other statistically significant variation in detec-
tion rate among tissues.

3.6. Pathogen prevalence across host species

Out of the nine pathogen groups tested in this study, the four most
frequently detected (A. phagocytophilum, B. burgdorferi s. 1., Bartonella
spp., and R. helvetica) are presented in Fig. 3, which shows their prev-
alence across host species based on individual positivity (i.e., positivity
in at least one tissue sample).

Among all tested pathogens, A. phagocytophilum was the most prev-
alent, particularly in both hedgehog species. Almost all individuals of
E. roumanicus (42/42; 100%) and E. europaeus (80/83; 96%) tested

Number and proportion of cadavers assigned to each habitat category — urban, periurban, rural, or wildlife rehabilitation centre (WRC). Percentages are calculated
relative to the total number of individuals for which habitat classification was available. ER = European hedgehog (Erinaceus europaeus), EE = Northern white-breasted
hedgehog (E. roumanicus), SV = Eurasian red squirrel (Sciurus vulgaris), TM = Common blackbird (Turdus merula).

ER EE sV ™ total
Urban 9 26% 9 12% 14 31% 35 51% 67 30%
periurban 2 6% 13 17% 15 33% 17 25% 47 21%
rural 0 0% 2 3% 6 13% 3 4% 11 5%
WRCs* 24 68% 52 68% 10 22% 13 19% 99 44%
total 35 76 45 68 224

* wildlife rehabilitation centres.
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Table 3

Availability of tissue types sampled from the four target species. Tissue unavailability resulted from organ damage or absence (specifically in roadkill), advanced
decomposition, or contamination. ER = European hedgehog (Erinaceus europaeus), EE = Northern white-breasted hedgehog (E. roumanicus), SV = Eurasian red squirrel

(Sciurus vulgaris), TM = Common blackbird (Turdus merula).

Tissue  ear/skin muscle blood lungs” liver spleen” urinary kidneys” brain
bladder”

ER 100% (42/42) 100% 81% (34/42) 69% 83% (35/42) 83% (35/42) 95% (40/42) 81% (34/42) 79% (33/42)
° (42/42) ° (29/42) ° ° ’ ’ ’

EE 99% (82/83) 99% (82/83) 81% (67/83) 87% (72/83) 83% (69/83) 83% (69/83) 87% (72/83) 88% (73/83) 80% (66/83)

SV 100% (55/55) 100% (55/55) 89% (49/55) 95% (52/55) 95% (52/55) 91% (50/55) 78% (43/55) 91% (50/55) 76% (42/55)

™ 99% (87/88) 99% (87/88) 84% (74/88) - 93% (82/88) - - - 93% (82/88)

% (2 % (2 % (22 % (1 % (2 % (1 % (1 % (22.
Total* 99% (266/ 99% (266/ 84% (224/ 85% (153/ 89% (238/ 86% (154/ 86% (155/180) 87% (157/ 83% (223/

268) 268) 268) 180)

268)

180) 180) 268)

# indicates tissue types not collected from Turdus merula.

" total for all species or total for mammalian species in case tissues not collected from T. merula.

positive, indicating a consistently high and statistically significantly
higher infection rate in hedgehogs compared to S. vulgaris (34/55; 62%)
and T. merula (49/88; 56%), although the prevalence in these species
was still relatively high (Fisher's exact test; p < 0.0001). Borrelia burg-
dorferi s.1. showed variable prevalence across host species. The highest,
and statistically significantly different, proportions were found in
S. vulgaris (47/55; 85%) and E. europaeus (70/83; 84%), compared to
E. roumanicus (28/42; 67%) and T. merula (50/88; 57%) (Fisher's exact
test; p < 0.05).

Bartonella spp. were most frequently detected in S. vulgaris (42/55;
76%), followed by notably lower prevalence in Erinaceus roumanicus
(18/42; 43%) and E. europaeus (20/83; 24%). In contrast, only three
specimens of T. merula (3/88; 3%) tested positive for Bartonella. All
differences between the host species were statistically significant
(Fisher's exact test; p < 0.05).

Rickettsia helvetica showed a more heterogeneous distribution across
host species. The highest prevalence was detected in E. roumanicus (28/
42; 67%), followed by E. europaeus (31/83; 37%). In contrast, the
pathogen was nearly absent in both S. vulgaris (4/55; 7%) and T. merula
(6/88; 7%) (Fisher's exact test; p < 0.01).

In addition to the four most prevalent pathogens presented in Fig. 3,
five other pathogen taxa were detected at lower frequencies across the
studied host species.

Borrelia miyamotoi was identified in a total of nine individuals, with

positive cases recorded only in mammals: most frequently in S. vulgaris
(6/55; 11%) and to a lesser extent in E. europaeus (3/83; 4%). No pos-
itives were detected in E. roumanicus or T. merula.

Neoehrlichia mikurensis was also exclusively found in mammals: in
S. vulgaris (4/55; 7%) and E. europaeus (3/83; 4%); with no positives
among E. roumanicus.

Spiroplasma spp. were detected at low prevalence across three
mammalian hosts: E. europaeus (4/83; 5%), E. roumanicus (2/42; 5%),
and S. vulgaris (1/55; 2%); no positives were recorded in T. merula.

Francisella spp. were detected sporadically, with positive cases in
E. europaeus (2/83; 2%), S. vulgaris (1/55; 2%), and T. merula (1/88;
1%).

A Babesia microti-like DNA was detected only in E. europaeus (4/83;
5%), making it the only host species in which this group of protozoan
pathogens was detected in this study.

As for the detection of flaviviral RNA, no positive samples were
found in either of the two species of hedgehogs, or squirrels. Never-
theless, Usutu virus, a mosquito-borne orthoflavivirus, was detected in
blackbirds, as reported previously [23].

From altogether 41 serum samples acquired from hedgehogs live
trapped in urban environments (Prague, Brno, and Ceské Budéjovice)
specific anti-TBEV IgG antibodies were detected in 17 of these in-
dividuals, corresponding to a seroprevalence of 41%.
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Tissue sample
Pathogen Host species X R . , | Urinary R i Individuals positive
Ear/skin | Muscle | Blood | Lungs Liver | Spleen bladder” Kidneys”"{ Brain
Erinaceus roumanicus 90% 76% 65% 93% 83% 71% 88% 85% 67% 42
Anaplasma phagocytophilum Erinaceus europaeus 88% 61% 43% 92% 79% 66% 57% 75% 45% 80
P phagocytop Sciurus vulgaris 4% 4%  17% | 67%  30%  47% @ 14%  27%  12% 34
Turdus merula 38% 25% 40% - 48% - - - 13% 49
Erinaceus roumanicus 78% 28% 38% 58% 44% 63% 33% 38% 27% 18
Bartonella spp. Erinaceus europaeus 65% 35% 22% 53% 53% 74% 32% 58% 17% 20
Sciurus vulgaris 67% 26% 50% 74% 71% 88% 37% 50% 41% 42
Erinaceus roumanicus 82% 71% 12% 38% 32% 16% 44% 32% 33% 28
Borrelia burgdorferis. | Erinaceus europaeus © 84% 61% 21% 35% 38% 38% * 58% 36% 30% 70
g " |Sciurus vulgaris " 91% 57% 17% 39% 20% 29% 39% 11% 20% 47
Turdus merula " 88% 15% 0% - 11% - - - 11% 50
Rickettsia helveti Erinaceus roumanicus "™ 89% 5% 0% 3% 3% 3% 8% 0% 9% 28
lckettsia nelvetica Erinaceus europaeus " 84% 14% 0% 3% 3% 0% 13% 0% 15% 31

Fig. 2. Comparison of tissue-specific detection efficiency for tick-borne pathogens (TBPs) in the four target host species. Detection efficiency was calculated as the
percentage of positive detections in a given tissue, relative to the total number of individuals positive for that pathogen in any tissue. Only pathogens with >25

positive individuals per host species were included.
#indicate tissues not sampled in Turdus merula.

*indicate statistically significant differences based on McNemar's test with continuity correction and Holm-adjusted p-values (p < 0.05; ** p < 0.01; *** p < 0.001).
Only tissues with a statistically significantly higher detection rate compared to all other tissues for a given pathogen and host species (i.e. within the same row) are
marked. A red asterisk (*) denotes cases where the difference between ear/skin and urinary bladder samples was not statistically significant but those two tissues had

a statistically significantly higher detection rate compared to all other tissues.

3.7. Patterns of co-infections

To investigate patterns of co-infection among the detected TBPs, we
conducted a series of asymptotic general independence tests (with no
stratification concerning the tissue or the species), and generalized
Cochran-Mantel-Haenszel (CMH) tests, with the tissue or the species as
the stratification factor. Additionally, the asymptotic general indepen-
dence test was conducted separately on each species subset; we used a
permutation-based implementation of these tests. These tests were all
found to be statistically highly significant, with p < 2.2 x 107°. On
species subsets, these tests were followed by post-hoc pairwise com-
parisons (whenever possible, that is, where the pathogen was detected at
least on one sample) by Pearson's y? test of independence, with Yate's
continuity correction and Holm-adjusted p-values. Statistically signifi-
cant associations (p < 0.05 after correction) were considered indicative
of non-random co-occurrence.

Among all host species, S. vulgaris showed the highest number of
statistically significant co-infections. The strongest association was
found between Rickettsia helvetica and Neoehrlichia mikurensis (p = 1.6 x
10719, Rickettsia helvetica and Spiroplasma spp. (p = 6.2 x 107°), and
Spiroplasma spp. and Neoehrlichia mikurensis (p = 1.0 x 10™%).

In E. europaeus, three statistically significant co-infections were
detected between Borrelia burgdorferi s. 1. and Anaplasma phag-
ocytophilum (p = 3.4 x 10719, Borrelia burgdorferi s. 1. and Rickettsia
helvetica (p = 5.8 x 10~%), and Bartonella spp. and Anaplasma phag-
ocytophilum (p = 9.4 x 107%).

In E. roumanicus, two statistically significant co-infections were
revealed between Bartonella spp. and Anaplasma phagocytophilum (p =
0.0015) and Borrelia burgdorferi s. 1. and Rickettsia helvetica (p = 0.0234).

In T. merula, only one significant co-infection was observed between
Borrelia burgdorferi s. 1. and Bartonella spp. (p = 0.0070).

No other associations reached statistical significance.

3.8. Effect of cadaver autolysis on pathogen detection

Prevalence rates of each tested pathogen were compared among
cadavers classified into different autolysis grades. Cadavers categorized
as grade 3 were excluded from this analysis due to their low overall
number. In general, pathogen prevalence was comparable across the
different autolysis categories. Only in case of Bartonella spp. the preva-
lence was statistically significantly higher in cadavers with autolysis

grade 1 A compared to grade 2 (Fisher's exact test; p < 0.001) (Fig. 4).

In a subset of individuals categorized as autolysis grade 3, pathogen
detection was still successful. Despite the potentially degraded state of
the tissues, at least one pathogen was detected in each of these in-
dividuals (see Supplementary Table 5).

3.9. Age-related differences in pathogen prevalence

Despite the overall high prevalence of several TBPs indicating long-
term infections, the infection rates were comparable across the three age
classes: juvenile, subadult, and adult (Fig. 5). However, certain patho-
gens exhibited notable differences in age-specific prevalence. Anaplasma
phagocytophilum showed the highest prevalence in juvenile (85%) and
subadult (86%) individuals, with a statistically significant decrease
(Fisher's exact test, p < 0.01) in adults (70%). Similarly, R. helvetica was
statistically significantly more frequently detected in juvenile (37%) and
subadult (39%) individuals compared to adults (17%) (Fisher's exact
test, p < 0.01).

For other pathogens, including Borrelia burgdorferi s.l., prevalence
remained relatively stable across age classes (69-81%), suggesting early
and sustained exposure throughout the lifetime of individual animal
hosts. Bartonella spp. prevalence showed a decreasing trend with age
(from 41% in juveniles to 28% in adults), although not statistically
significant. Other TBPs such as Neoehrlichia mikurensis, Borrelia miya-
motoi, Spiroplasma spp., Francisella spp., and piroplasmids were detected
at low frequencies and did not show clear age-related patterns.

3.10. Habitat-specific differences in pathogen prevalence

Pathogen prevalence was further evaluated in relation to the habitat
category where the cadaver was found (urban, periurban, rural, or WRC;
Fig. 6). A statistically significant difference was detected for Bartonella
spp., with individuals collected in rural areas showing a significantly
higher prevalence compared to those from urban (Fisher's exact test; p <
0.01), and periurban environments (Fisher's exact test; p < 0.05). For
other pathogens, no statistically significant differences among habitat
categories were observed.
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Fig. 3. Prevalence of the four most frequently detected pathogens in target host species, based on individual positivity (i.e., individuals positive in at least one tissue
sample). Red bars indicate the proportion of positive individuals, while green bars represent negative results. Sample sizes (n) are shown for each host species. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Discussion
4.1. Surveillance approaches and methodological insights

Understanding the transmission cycles of TBPs in both natural and
urban environments remains a major challenge. Most studies rely on
detecting pathogens in (mostly questing) ticks, making it difficult to
infer whether the pathogen originated from the tick or its host [11].
When vertebrate hosts are included, studies most often rely also on
sampling engorged ticks removed from animals rather than directly
testing host tissues, further limiting insight into the hosts' actual infec-
tion status [e.g.,9,37,38,39].

Cadaver-based surveillance provides a unique and underutilized
method to detect TBPs directly within host tissues, independent of the
presence of ticks. Previous studies, such as those by Szekeres et al. [11],
demonstrated that TBPs screening in road-killed mammals can reveal
reliable insights into urban pathogen circulation. Our study further

confirms that this approach can be highly informative, even under
moderate to advanced autolysis. Compared to earlier studies focused on
the same target vertebrate species cadavers [11,40,41], our results show
higher infection rates for most of the tested TBPs. This is likely due to our
multi-tissue sampling strategy that allowed detection across various
organs, including skin, ear, liver, spleen, and lungs. Tissue tropism
varied by pathogen: B. burgdorferi s.l. and R. helvetica were most effi-
ciently detected in skin and ear samples, while A. phagocytophilum and
Bartonella spp. were more frequently detected in lungs, liver, and spleen,
confirming previous findings of pathogen-specific tissue localization
[41-49].

Wildlife rehabilitation centres (WRCs) played a key role in the
sample acquisition, serving as a valuable source of otherwise inacces-
sible specimens from urban and periurban areas. However, this strategy
introduces several limitations. Animals admitted to WRCs may not be
representative of the broader wildlife population; they are often injured,
immunocompromised, or more likely to have frequent contact with
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Fig. 4. Prevalence of tick-borne pathogens in cadavers of European hedgehog (Erinaceus europaeus), Northern white-breasted hedgehog (E. roumanicus), Eurasian red
squirrel (Sciurus vulgaris), and Common blackbird (Turdus merula) across different autolysis grades. Grade 1 A corresponds to recently dead individuals with minimal
signs of decomposition (~1-3 h post-mortem in cool weather). Grade 1 B reflects early-stage decomposition (~1-3 h in warm weather or > 3 h in cool weather).
Grade 2 represents moderate decomposition (~ < 3-6 h post-mortem in warm weather or more than 3-12 h in cool weather). Statistical significance was evaluated
using Fisher's exact test; *** indicates p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Prevalence of tick-borne pathogens in cadavers of European hedgehog (Erinaceus europaeus), Northern white-breasted hedgehog (E. roumanicus), Eurasian red
squirrel (Sciurus vulgaris), and Common blackbird (Turdus merula) of different age groups: juvenile (yellow), subadult (orange), adult (red). Statistical significance
was tested using Fisher's exact test, * indicates p < 0.05, ** indicates p < 0.01. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 6. Prevalence of tick-borne pathogens in cadavers of European hedgehog (Erinaceus europaeus), Northern white-breasted hedgehog (E. roumanicus), Eurasian red
squirrel (Sciurus vulgaris), and Common blackbird (Turdus merula) originating from areas with varying levels of urbanization. The degree of urbanization was
classified using high-resolution satellite imagery from the Urban Atlas 2012 [28]: urban (dark blue), periurban (blue), rural (green), wildlife rehabilitation centres
(grey). Animals obtained from wildlife rehabilitation centres were typically found in urban or periurban environments and subsequently held in WRC facilities for a

variable (often unspecified) period prior to death. Statistical significance was assessed using Fisher's exact test; * indicates p < 0.05,

** indicates p < 0.01. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

humans. These factors can skew pathogen prevalence estimates.
Furthermore, time spent in captivity may alter infection status (through
natural pathogen clearance, progression, or the use of antiparasitics)
thereby affecting detectability. The lack of precise geolocation data for
many WRC-derived cadavers also limits spatial analyses. Similar con-
cerns have been raised in earlier studies, highlighting the need for
cautious interpretation when working with WRC-sourced material
[11,50].

4.2. Detection reliability and limitations

Importantly, none of the tissue types achieved 100% detection effi-
ciency, which reinforces the importance of multi-tissue sampling for
accurate TBPs surveillance. While skin and ear were generally most
sensitive, internal organs provided additional value, particularly for
detecting pathogens like A. phagocytophilum and Bartonella spp. The real-
time PCR assays employed in our study were further validated by con-
ventional PCRs and sequencing for the three most prevalent pathogens
(A. phagocytophilum, B. burgdorferis.l., and Bartonella spp.), as detailed in
earlier publications [24-26]. Although conventional PCR enabled
(geno)species and ecotype identification, it was occasionally unsuc-
cessful in samples that tested positive by real-time PCR, leading to lower
reported prevalences (especially for A. phagocytophilum) or completely
negative results (as in the case of blackbirds and Bartonella spp.) in the
detailed publications.

Pathogen detection remained feasible even in cadavers classified as
autolysis grade 3, highlighting the robustness of PCR-based molecular
diagnostics under suboptimal tissue preservation. Moreover, for most of
the tested TBPs, detection efficiency did not significantly differ across

the various autolysis grades. However, Bartonella spp. prevalence was
significantly higher in fresh cadavers (grade 1 A) compared to moder-
ately decomposed ones (grade 2; p < 0.05). This indicates that although
decomposition can reduce detection efficiency for some pathogens
(particularly those residing in more degradation-prone tissues), valuable
molecular data can still be recovered from moderately decomposed
specimens.

While pathogen DNA detection confirms exposure, it does not
necessarily imply infectiousness or reservoir competence. Particularly
for pathogens found in skin or ear samples, it remains unclear whether
the presence of DNA reflects active infection or residual DNA of mi-
croorganisms that were inoculated into the skin during tick feeding but
do not replicate in the vertebrate host. Nevertheless, high prevalence of
B. burgdorferi s.1. and R. helvetica in these tissues and dissemination to
internal organs may also indicate replication at the site of inoculation
and potential for transmission to co-feeding ticks.

4.3. Host-pathogen associations

Our results support the role of synanthropic species (E. europaeus,
E. roumanicus, S. vulgaris, and T. merula) as valuable sentinels for urban
TBPs surveillance.

Erinaceus roumanicus showed the highest overall pathogen preva-
lence, including 100% prevalence for A. phagocytophilum and 67% for
B. burgdorferi s.l., consistent with previous findings in Romanian
hedgehogs [51]. While A. phagocytophilum and B. burgdorferi s.1. preva-
lence was comparable between E. roumanicus and E. europaeus, the
prevalences of other TBPs suggested species-specific differences in either
susceptibility or exposure, as previously hypothesized by Dziemian et al.
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[52]. The consistently high TBPs prevalences in both hedgehog species
underscores their significant role as a reservoir for these pathogens.
Supporting this, a study by Jahfari et al. [53] and Springer et al. [54]
found that European hedgehogs contribute to the maintenance of
various TBPs in urban and suburban areas, highlighting their involve-
ment in enzootic transmission cycles. Additionally, research by Szekeres
et al. [11] demonstrated that E. roumanicus harbours a diverse range of
TBPs, including B. afzelii and R. helvetica, further reinforcing its epide-
miological significance.

Sciurus vulgaris exhibited a high prevalence of B. burgdorferi s.l.
(85%) and Bartonella spp. (76%), consistent with previous findings of
these pathogens in Eurasian red squirrels from Belgium [55], Germany
[40], and Lithuania [41].

Turdus merula showed moderate prevalences of A. phagocytophilum
and B. burgdorferi s.1., but very low prevalence for Bartonella spp. Pre-
viously proposed host specificity of Bartonella spp. to mammals was first
challenged by the detection of Bartonella DNA in sea turtles [56]. Since
then, multiple studies have investigated the presence of Bartonella spp.
in avian hosts, confirming the detection of Bartonella DNA in various
bird species (e.g., [57-60]). However, to the best of our knowledge, such
detection has not yet been reported in T. merula. Further research is
needed to clarify the host specificity of Bartonella spp. and the potential
roles of avian species and their ectoparasites in the ecology and trans-
mission dynamics of these bacteria.

4.4. Patterns and implications of co-infection

Co-infections were frequently detected with some associations being
statistically significant, especially between Borrelia burgdorferi s. 1. and
other pathogens (two co-infections for E. europaeus and one for
E. roumanicus and T. merula), and between Anaplasma phagocytophilum
and Bartonella spp. (in E. roumanicus and E. europaeus). These findings of
tick-borne pathogens co-infections are consistent with the general data
reviewed by Gomez-Chamorro et al. [61].

Co-infections can influence disease dynamics in wildlife and
complicate diagnosis in both veterinary and human medicine. Their
frequent occurrence, especially in urban-adapted mammals, reinforces
the importance of using comprehensive diagnostic tools and considering
co-infection as a potential confounding factor in disease surveillance and
modelling.

4.5. Ecological and demographic drivers of pathogen prevalence

Infection patterns also varied by host age and habitat. Juvenile and
subadult hosts had significantly higher prevalence of A. phagocytophilum
and R. helvetica than adults. For B. burgdorferi s.l. and Bartonella spp.,
prevalence remained relatively stable or showed non-significant trends
across age groups. These findings suggest early-life exposure to TBPs and
potentially age-dependent susceptibility or immune-mediated
clearance.

Bartonella spp. prevalence was significantly higher in rural areas,
possibly due to differences in host species richness, density of other
arthropod vectors (most likely fleas), or land-use patterns. No significant
differences were found for other pathogens. However, given the syn-
anthropic habits of hedgehogs, squirrels, and blackbirds, and their
frequent exposure to ticks in fragmented urban green spaces, these
species serve as valuable sentinels for detecting local TBPs diversity. The
presence of zoonotic pathogens such as B. burgdorferi s.l.,
A. phagocytophilum, and Bartonella spp. in these animals underlines the
public health relevance of TBPs monitoring in urban wildlife.

4.6. Arboviruses in urban wildlife
To evaluate the presence of flaviviral RNA in the sampled wildlife,

we screened all cadaver tissue samples using molecular assays. Usutu
virus was the only flavivirus detected, and it was identified exclusively
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in blackbirds (T. merula) [23].

All mammalian cadavers tested negative for flaviviral RNA. Given
that hedgehogs are considered probable reservoirs of tick-borne en-
cephalitis virus (TBEV) [14,15,62], a separate serological screening was
also performed on live-trapped individuals to assess TBEV exposure. The
contact of hedgehogs with TBEV was confirmed as the seroprevalence
rate reached 41% in the analyzed samples. These animals were not
included in the cadaver pathogen screening dataset, and no further de-
tails are therefore provided here for them.

Despite this relatively high antibody prevalence, TBEV RNA was not
detected in any of the hedgehog cadavers. Although RNA degradation in
post-mortem tissues cannot be entirely excluded, this explanation is
unlikely to fully account for the negative results, as Usutu virus RNA was
successfully detected in blackbird cadavers processed using the same
sampling and extraction protocols.

Rodents and insectivores are generally considered natural reservoirs
of TBEV [14,63], but specific data for squirrels and hedgehogs remain
scarce. While previous studies have reported high seroprevalence in
these species [62,64,65], direct detection of TBEV RNA or successful
virus isolation appears to be rare [64,65]. This discrepancy may be due
to the short persistence of the virus in tissues and body fluids following
infection—unlike in bank and field voles, where longer-term TBEV RNA
detection has been reported [66-68]. It is also possible that a rapid,
antibody-mediated immune response prevents long-term RNA detect-
ability in hedgehog tissues similar to human sera [69,70].

5. Conclusions

This study demonstrates that carcasses of synanthropic vertebrates
constitute a valuable, underutilized resource for the surveillance of a
broad spectrum of zoonotic vector-borne pathogens in urban areas.
Through multi-tissue molecular screening of 268 cadavers across four
synanthropic species—Erinaceus europaeus, E. roumanicus, Sciurus vul-
garis, and Turdus merula—we detected high prevalence rates of several
key tick-borne pathogens, including Anaplasma phagocytophilum, Borre-
lia burgdorferi s.l., Bartonella spp., and Rickettsia helvetica. Notably,
employing multiple tissue types substantially enhanced the overall
detection sensitivity, while even moderately or advanced autolyzed
specimens retained sufficient diagnostic value. Hedgehogs, particularly
E. roumanicus, showed consistently high infection rates and extensive co-
infections, reinforcing their importance in urban TBPs cycles. Mean-
while, S. vulgaris and T. merula contributed distinct host-pathogen pro-
files, including the absence of several tested TBPs in blackbirds and
elevated Bartonella prevalence in squirrels. Habitat- and age-related
variation in pathogen prevalence further underscore the influence of
ecological and demographic factors. Together, these findings support
the integration of cadaver-based host surveillance into urban zoonotic
disease monitoring strategies, offering complementary insights to con-
ventional tick-based approaches and advancing our understanding of
TBPs circulation in human-dominated landscapes.
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